30,376 research outputs found

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Architectures for Wireless Sensor Networks

    Get PDF
    Various architectures have been developed for wireless sensor networks. Many of them leave to the programmer important concepts as the way in which the inter-task communication and dynamic reconfigurations are addressed. In this paper we describe the characteristics of a new architecture we proposed - the data-centric architecture. This architecture offers an easy way of structuring the applications designed for wireless sensor nodes that confers them superior performances

    Dynamic Geospatial Spectrum Modelling: Taxonomy, Options and Consequences

    Get PDF
    Much of the research in Dynamic Spectrum Access (DSA) has focused on opportunistic access in the temporal domain. While this has been quite useful in establishing the technical feasibility of DSA systems, it has missed large sections of the overall DSA problem space. In this paper, we argue that the spatio-temporal operating context of specific environments matters to the selection of the appropriate technology for learning context information. We identify twelve potential operating environments and compare four context awareness approaches (on-board sensing, databases, sensor networks, and cooperative sharing) for these environments. Since our point of view is overall system cost and efficiency, this analysis has utility for those regulators whose objectives are reducing system costs and enhancing system efficiency. We conclude that regulators should pay attention to the operating environment of DSA systems when determining which approaches to context learning to encourage

    A Comprehensive Experimental Comparison of Event Driven and Multi-Threaded Sensor Node Operating Systems

    Get PDF
    The capabilities of a sensor network are strongly influenced by the operating system used on the sensor nodes. In general, two different sensor network operating system types are currently considered: event driven and multi-threaded. It is commonly assumed that event driven operating systems are more suited to sensor networks as they use less memory and processing resources. However, if factors other than resource usage are considered important, a multi-threaded system might be preferred. This paper compares the resource needs of multi-threaded and event driven sensor network operating systems. The resources considered are memory usage and power consumption. Additionally, the event handling capabilities of event driven and multi-threaded operating systems are analyzed and compared. The results presented in this paper show that for a number of application areas a thread-based sensor network operating system is feasible and preferable
    corecore