722,951 research outputs found

    Ab initio linear scaling response theory: Electric polarizability by perturbed projection

    Full text link
    A linear scaling method for calculation of the static {\em ab inito} response within self-consistent field theory is developed and applied to calculation of the static electric polarizability. The method is based on density matrix perturbation theory [Niklasson and Challacombe, cond-mat/0311591], obtaining response functions directly via a perturbative approach to spectral projection. The accuracy and efficiency of the linear scaling method is demonstrated for a series of three-dimensional water clusters at the RHF/6-31G** level of theory. Locality of the response under a global electric field perturbation is numerically demonstrated by approximate exponential decay of derivative density matrix elements.Comment: 4.25 pages in PRL format, 2 figure

    Coulomb's law corrections from a gauge-kinetic mixing

    Full text link
    We study the static quantum potential for a gauge theory which includes the mixing between the familiar photon U(1)QEDU(1)_{QED} and a second massive gauge field living in the so-called hidden-sector U(1)hU(1)_h. Our discussion is carried out using the gauge-invariant but path-dependent variables formalism, which is alternative to the Wilson loop approach. Our results show that the static potential is a Yukawa correction to the usual static Coulomb potential. Interestingly, when this calculation is done inside a superconducting box, the Coulombic piece disappears leading to a screening phase.Comment: 4 page

    The Static Potential to O(\alpha^2) in Lattice Perturbation Theory

    Full text link
    We present a calculation of Wilson loops, and the static inter-quark potential to O(α2)O(\alpha^2) in lattice perturbation theory. This is carried out with the Wilson, Symanzik-Weisz, and Iwasaki gauge actions and the Wilson, Sheikholeslami-Wohlert, and Kogut-Susskind dynamical fermion action for small Wilson loops, and with the Wilson gauge action and each of the dynamical quark actions in the case of the static potential.Comment: Lattice2001(improvement) 3 pages, 3 figure

    Effective String Theory Revisited

    Full text link
    We revisit the effective field theory of long relativistic strings such as confining flux tubes in QCD. We derive the Polchinski-Strominger interaction by a calculation in static gauge. This interaction implies that a non-critical string which initially oscillates in one direction gets excited in orthogonal directions as well. In static gauge no additional term in the effective action is needed to obtain this effect. It results from a one-loop calculation using the Nambu-Goto action. Non-linearly realized Lorentz symmetry is manifest at all stages in dimensional regularization. We also explain that independent of the number of dimensions non-covariant counterterms have to be added to the action in the commonly used zeta-function regularization.Comment: 21 pages, 4 figures, v2: typo corrected, references added, published versio

    Hyperon Polarizabilities in the Bound State Soliton Model

    Get PDF
    A detailed calculation of electric and magnetic static polarizabilities of octet hyperons is presented in the framework of the bound state soliton model. Both seagull and dispersive contributions are considered, and the results are compared with different model predictions.Comment: 19 pages, plain Latex, no figure

    Static potential in scalar QED3_3 with non-minimal coupling

    Get PDF
    Here we compute the static potential in scalar QED3QED_3 at leading order in 1/Nf1/N_f. We show that the addition of a non-minimal coupling of Pauli-type (\eps j^{\mu}\partial^{\nu}A^{\alpha}), although it breaks parity, it does not change the analytic structure of the photon propagator and consequently the static potential remains logarithmic (confining) at large distances. The non-minimal coupling modifies the potential, however, at small charge separations giving rise to a repulsive force of short range between opposite sign charges, which is relevant for the existence of bound states. This effect is in agreement with a previous calculation based on Mo¨\ddot{o}ller scattering, but differently from such calculation we show here that the repulsion appears independently of the presence of a tree level Chern-Simons term which rather affects the large distance behavior of the potential turning it into constant.Comment: 13 pages, 3 figure

    A calculation of the BBB_{B} parameter in the static limit

    Full text link
    We calculate the BBB_{B} parameter, relevant for B0\overline{B}^0 -- B0B^0 mixing, from a lattice gauge theory simulation at β=6.0\beta = 6.0. The bottom quarks are simulated in the static theory, the light quarks with Wilson fermions. Improved smearing functions produced by a variational technique, MOST, are used to reduce statistical errors and minimize excited-state contamination of the ground-state signal. We obtain BB(4.33GeV)=0.984+4B_B(4.33 GeV) = 0.98^{+4}_{-4} (statistical) 18+3^{+3}_{-18} (systematic) which corresponds to B^B=1.406+6\widehat{B}_B = 1.40^{+6}_{-6} (statistical) 26+4^{+4}_{-26} (systematic) for the one-loop renormalization-scheme-independent parameter. The systematic errors include the uncertainty due to alternative (less favored) treatments of the perturbatively-calculated mixing coefficients; this uncertainty is at least as large as residual differences between Wilson-static and clover-static results. Our result agrees with extrapolations of results from relativistic (Wilson) heavy quark simulations.Comment: 39 pages (REVTeX) including 10 figures (PostScript); Final version accepted for publication: Added new section for clarity; Included comparison to recent results by other groups; slight numerical changes; Essential conclusions remain the sam

    The three-quark static potential in perturbation theory

    Full text link
    We study the three-quark static potential in perturbation theory in QCD. A complete next-to-leading order calculation is performed in the singlet, octets and decuplet channels and the potential exponentiation is demonstrated. The mixing of the octet representations is calculated. At next-to-next-to-leading order, the subset of diagrams producing three-body forces is identified in Coulomb gauge and its contribution to the potential calculated. Combining it with the contribution of the two-body forces, which may be extracted from the quark-antiquark static potential, we obtain the complete next-to-next-to-leading order three-quark static potential in the colour-singlet channel.Comment: 36 pages, 11 figures, version published in Phys.Rev.
    corecore