44,192 research outputs found

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Toward Semantics-aware Representation of Digital Business Processes

    Get PDF
    An extended enterprise (EE) can be described by a set of models each representing a specific aspect of the EE. Aspects can for example be the process flow or the value description. However, different models are done by different people, which may use different terminology, which prevents relating the models. Therefore, we propose a framework consisting of process flow and value aspects and in addition a static domain model with structural and relational components. Further, we outline the usage of the static domain model to enable relating the different aspects

    Sensitivity of Fractured Reservoir Performance to Static and Dynamic Properties, and History Matching

    Get PDF
    Imperial Users onl

    Exploring the Dynamic Costs of Process-aware Information Systems through Simulation

    Get PDF
    Introducing process-aware information systems (PAIS) in enterprises (e.g., workflow management systems, case handling systems) is associated with high costs. Though cost evaluation has received considerable attention in software engineering for many years, it is difficult to apply existing evaluation approaches to PAIS. This difficulty particularly stems from the inability of these techniques to deal with the complex interplay of the many technological, organizational and project-driven factors which emerge in the context of PAIS engineering projects. In response to this problem this paper proposes an approach which utilizes simulation models for investigating costs related to PAIS engineering projects. We motivate the need for simulation, discuss the design and execution of simulation models, and give an illustrating example

    Simulation Models for Analyzing the Dynamic Costs of Process-aware Information Systems

    Get PDF
    Introducing process-aware information systems (PAIS) in enterprises (e.g., workflow management systems, case handling systems) is associated with high costs. Though cost estimation has received considerable attention in software engineering for many years, it is difficult to apply existing approaches to PAIS. This difficulty particularly stems from the inability of existing estimation techniques to deal with the complex interplay of the many technological, organizational and project-driven factors which emerge in the context of PAIS. In response to this problem, this paper proposes an approach which utilizes simulation models for investigating the dynamic costs of PAIS engineering projects. We motivate the need for simulation, discuss the development and execution of simulation models, and give an illustrating example. The present work has been accomplished in the EcoPOST project, which deals with the development of a comprehensive evaluation framework for analyzing PAIS engineering projects from a value-based perspective

    Static Analysis of Deterministic Negotiations

    Full text link
    Negotiation diagrams are a model of concurrent computation akin to workflow Petri nets. Deterministic negotiation diagrams, equivalent to the much studied and used free-choice workflow Petri nets, are surprisingly amenable to verification. Soundness (a property close to deadlock-freedom) can be decided in PTIME. Further, other fundamental questions like computing summaries or the expected cost, can also be solved in PTIME for sound deterministic negotiation diagrams, while they are PSPACE-complete in the general case. In this paper we generalize and explain these results. We extend the classical "meet-over-all-paths" (MOP) formulation of static analysis problems to our concurrent setting, and introduce Mazurkiewicz-invariant analysis problems, which encompass the questions above and new ones. We show that any Mazurkiewicz-invariant analysis problem can be solved in PTIME for sound deterministic negotiations whenever it is in PTIME for sequential flow-graphs---even though the flow-graph of a deterministic negotiation diagram can be exponentially larger than the diagram itself. This gives a common explanation to the low-complexity of all the analysis questions studied so far. Finally, we show that classical gen/kill analyses are also an instance of our framework, and obtain a PTIME algorithm for detecting anti-patterns in free-choice workflow Petri nets. Our result is based on a novel decomposition theorem, of independent interest, showing that sound deterministic negotiation diagrams can be hierarchically decomposed into (possibly overlapping) smaller sound diagrams.Comment: To appear in the Proceedings of LICS 2017, IEEE Computer Societ
    corecore