3,033 research outputs found

    State-Space Modeling and Stability Analysis for Microgrids with Distributed Secondary Control

    Full text link
    © 2018 IEEE. High penetration of renewable energies in power systems leads to the necessity of comprehensive modelling of a microgrid (MG) for its appropriate control. The distributed secondary control in the MG can be used for complementing the role of primary droop-based control. This paper presents a systematic way of developing a linearized small signal state space model with distributed secondary control as well as stability analysis of an islanded AC MG. The MG considered here, consists of three distributed generations (DGs) represented in the synchronous (DQ) reference frame. To show the effect of controller parameters on system stability, the eigenvalue analysis is presented here. The MATLAB/Simulink model of islanded MG with both primary and secondary control strategies is also developed to verify the outcomes of small-signal analysis. The simulation results show that the voltage controller simultaneously achieves the critical voltage restoration and accurate reactive power sharing

    Secondary Frequency and Voltage Control of Islanded Microgrids via Distributed Averaging

    Get PDF
    In this work we present new distributed controllers for secondary frequency and voltage control in islanded microgrids. Inspired by techniques from cooperative control, the proposed controllers use localized information and nearest-neighbor communication to collectively perform secondary control actions. The frequency controller rapidly regulates the microgrid frequency to its nominal value while maintaining active power sharing among the distributed generators. Tuning of the voltage controller provides a simple and intuitive trade-off between the conflicting goals of voltage regulation and reactive power sharing. Our designs require no knowledge of the microgrid topology, impedances or loads. The distributed architecture allows for flexibility and redundancy, and eliminates the need for a central microgrid controller. We provide a voltage stability analysis and present extensive experimental results validating our designs, verifying robust performance under communication failure and during plug-and-play operation.Comment: Accepted for publication in IEEE Transactions on Industrial Electronic
    corecore