29,278 research outputs found

    Fuzzy Self-Learning Controllers for Elasticity Management in Dynamic Cloud Architectures

    Get PDF
    Cloud controllers support the operation and quality management of dynamic cloud architectures by automatically scaling the compute resources to meet performance guarantees and minimize resource costs. Existing cloud controllers often resort to scaling strategies that are codified as a set of architecture adaptation rules. However, for a cloud provider, deployed application architectures are black-boxes, making it difficult at design time to define optimal or pre-emptive adaptation rules. Thus, the burden of taking adaptation decisions often is delegated to the cloud application. We propose the dynamic learning of adaptation rules for deployed application architectures in the cloud. We introduce FQL4KE, a self-learning fuzzy controller that learns and modifies fuzzy rules at runtime. The benefit is that we do not have to rely solely on precise design-time knowledge, which may be difficult to acquire. FQL4KE empowers users to configure cloud controllers by simply adjusting weights representing priorities for architecture quality instead of defining complex rules. FQL4KE has been experimentally validated using the cloud application framework ElasticBench in Azure and OpenStack. The experimental results demonstrate that FQL4KE outperforms both a fuzzy controller without learning and the native Azure auto-scalin

    Self-Learning Cloud Controllers: Fuzzy Q-Learning for Knowledge Evolution

    Get PDF
    Cloud controllers aim at responding to application demands by automatically scaling the compute resources at runtime to meet performance guarantees and minimize resource costs. Existing cloud controllers often resort to scaling strategies that are codified as a set of adaptation rules. However, for a cloud provider, applications running on top of the cloud infrastructure are more or less black-boxes, making it difficult at design time to define optimal or pre-emptive adaptation rules. Thus, the burden of taking adaptation decisions often is delegated to the cloud application. Yet, in most cases, application developers in turn have limited knowledge of the cloud infrastructure. In this paper, we propose learning adaptation rules during runtime. To this end, we introduce FQL4KE, a self-learning fuzzy cloud controller. In particular, FQL4KE learns and modifies fuzzy rules at runtime. The benefit is that for designing cloud controllers, we do not have to rely solely on precise design-time knowledge, which may be difficult to acquire. FQL4KE empowers users to specify cloud controllers by simply adjusting weights representing priorities in system goals instead of specifying complex adaptation rules. The applicability of FQL4KE has been experimentally assessed as part of the cloud application framework ElasticBench. The experimental results indicate that FQL4KE outperforms our previously developed fuzzy controller without learning mechanisms and the native Azure auto-scaling

    Learning a Partitioning Advisor with Deep Reinforcement Learning

    Full text link
    Commercial data analytics products such as Microsoft Azure SQL Data Warehouse or Amazon Redshift provide ready-to-use scale-out database solutions for OLAP-style workloads in the cloud. While the provisioning of a database cluster is usually fully automated by cloud providers, customers typically still have to make important design decisions which were traditionally made by the database administrator such as selecting the partitioning schemes. In this paper we introduce a learned partitioning advisor for analytical OLAP-style workloads based on Deep Reinforcement Learning (DRL). The main idea is that a DRL agent learns its decisions based on experience by monitoring the rewards for different workloads and partitioning schemes. We evaluate our learned partitioning advisor in an experimental evaluation with different databases schemata and workloads of varying complexity. In the evaluation, we show that our advisor is not only able to find partitionings that outperform existing approaches for automated partitioning design but that it also can easily adjust to different deployments. This is especially important in cloud setups where customers can easily migrate their cluster to a new set of (virtual) machines

    Efficient Subgraph Matching on Billion Node Graphs

    Full text link
    The ability to handle large scale graph data is crucial to an increasing number of applications. Much work has been dedicated to supporting basic graph operations such as subgraph matching, reachability, regular expression matching, etc. In many cases, graph indices are employed to speed up query processing. Typically, most indices require either super-linear indexing time or super-linear indexing space. Unfortunately, for very large graphs, super-linear approaches are almost always infeasible. In this paper, we study the problem of subgraph matching on billion-node graphs. We present a novel algorithm that supports efficient subgraph matching for graphs deployed on a distributed memory store. Instead of relying on super-linear indices, we use efficient graph exploration and massive parallel computing for query processing. Our experimental results demonstrate the feasibility of performing subgraph matching on web-scale graph data.Comment: VLDB201
    corecore