4 research outputs found

    A new approach to distributed fusion filtering for networked systems with random parameter matrices and correlated noises

    Get PDF
    This paper is concerned with the distributed filtering problem for a class of discrete-time stochastic systems over a sensor network with a given topology. The system presents the following main features: (i) random parameter matrices in both the state and observation equations are considered; and (ii) the process and measurement noises are one-step autocorrelated and two-step cross-correlated. The state estimation is performed in two stages. At the first stage, through an innovation approach, intermediate distributed least-squares linear filtering estimators are obtained at each sensor node by processing available output measurements not only from the sensor itself but also from its neighboring sensors according to the network topology. At the second stage, noting that at each sampling time not only the measurement but also an intermediate estimator is available at each sensor, attention is focused on the design of distributed filtering estimators as the least-squares matrix-weighted linear combination of the intermediate estimators within its neighborhood. The accuracy of both intermediate and distributed estimators, which is measured by the error covariance matrices, is examined by a numerical simulation example where a four-sensor network is considered. The example illustrates the applicability of the proposed results to a linear networked system with state-dependent multiplicative noise and different network-induced stochastic uncertainties in the measurements; more specifically, sensor gain degradation, missing measurements and multiplicative observation noises are considered as particular cases of the proposed observation model.This research is supported by Ministerio de EconomĂ­a y Competitividad and Fondo Europeo de Desarrollo Regional FEDER (grant no. MTM2014- 52291-P, MTM2017-84199-P)

    Networked distributed fusion estimation under uncertain outputs with random transmission delays, packet losses and multi-packet processing

    Get PDF
    This paper investigates the distributed fusion estimation problem for networked systems whose mul- tisensor measured outputs involve uncertainties modelled by random parameter matrices. Each sensor transmits its measured outputs to a local processor over different communication channels and random failures –one-step delays and packet dropouts–are assumed to occur during the transmission. White sequences of Bernoulli random variables with different probabilities are introduced to describe the ob- servations that are used to update the estimators at each sampling time. Due to the transmission failures, each local processor may receive either one or two data packets, or even nothing and, when the current measurement does not arrive on time, its predictor is used in the design of the estimators to compensate the lack of updated information. By using an innovation approach, local least-squares linear estimators (filter and fixed-point smoother) are obtained at the individual local processors, without requiring the signal evolution model. From these local estimators, distributed fusion filtering and smoothing estimators weighted by matrices are obtained in a unified way, by applying the least-squares criterion. A simula- tion study is presented to examine the performance of the estimators and the influence that both sensor uncertainties and transmission failures have on the estimation accuracy.This research is supported by Ministerio de Economía, Industria y Competitividad, Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional FEDER (grant no. MTM2017-84199-P)

    State Estimation for a Class of Non-Uniform Sampling Systems with Missing Measurements

    No full text
    This paper is concerned with the state estimation problem for a class of non-uniform sampling systems with missing measurements where the state is updated uniformly and the measurements are sampled randomly. A new state model is developed to depict the dynamics at the measurement sampling points within a state update period. A non-augmented state estimator dependent on the missing rate is presented by applying an innovation analysis approach. It can provide the state estimates at the state update points and at the measurement sampling points within a state update period. Compared with the augmented method, the proposed algorithm can reduce the computational burden with the increase of the number of measurement samples within a state update period. It can deal with the optimal estimation problem for single and multi-sensor systems in a unified way. To improve the reliability, a distributed suboptimal fusion estimator at the state update points is also given for multi-sensor systems by using the covariance intersection fusion algorithm. The simulation research verifies the effectiveness of the proposed algorithms
    corecore