7 research outputs found

    State Amplification Subject To Masking Constraints

    Full text link
    This paper considers a state dependent broadcast channel with one transmitter, Alice, and two receivers, Bob and Eve. The problem is to effectively convey ("amplify") the channel state sequence to Bob while "masking" it from Eve. The extent to which the state sequence cannot be masked from Eve is referred to as leakage. This can be viewed as a secrecy problem, where we desire that the channel state itself be minimally leaked to Eve while being communicated to Bob. The paper is aimed at characterizing the trade-off region between amplification and leakage rates for such a system. An achievable coding scheme is presented, wherein the transmitter transmits a partial state information over the channel to facilitate the amplification process. For the case when Bob observes a stronger signal than Eve, the achievable coding scheme is enhanced with secure refinement. Outer bounds on the trade-off region are also derived, and used in characterizing some special case results. In particular, the optimal amplification-leakage rate difference, called as differential amplification capacity, is characterized for the reversely degraded discrete memoryless channel, the degraded binary, and the degraded Gaussian channels. In addition, for the degraded Gaussian model, the extremal corner points of the trade-off region are characterized, and the gap between the outer bound and achievable rate-regions is shown to be less than half a bit for a wide set of channel parameters.Comment: Revised versio

    State Leakage and Coordination of Actions: Core of the Receiver's Knowledge

    Full text link
    We revisit the problems of state masking and state amplification through the lens of empirical coordination by considering a state-dependent channel in which the encoder has causal and strictly causal state knowledge. We show that the problem of empirical coordination provides a natural framework in which to jointly study the problems of reliable communication, state masking, and state amplification. We characterize the regions of rate-equivocation-coordination trade-offs for several channel models with causal and strictly causal state knowledge. We introduce the notion of `core of the receiver's knowledge' to capture what the decoder can infer about all the signals involved in the model. We exploit this result to solve a channel state estimation zero-sum game in which the encoder prevents the decoder to estimate the channel state accurately.Comment: preliminary draf

    Secure Transmission of Sources over Noisy Channels with Side Information at the Receivers

    Full text link
    This paper investigates the problem of source-channel coding for secure transmission with arbitrarily correlated side informations at both receivers. This scenario consists of an encoder (referred to as Alice) that wishes to compress a source and send it through a noisy channel to a legitimate receiver (referred to as Bob). In this context, Alice must simultaneously satisfy the desired requirements on the distortion level at Bob, and the equivocation rate at the eavesdropper (referred to as Eve). This setting can be seen as a generalization of the problems of secure source coding with (uncoded) side information at the decoders, and the wiretap channel. A general outer bound on the rate-distortion-equivocation region, as well as an inner bound based on a pure digital scheme, is derived for arbitrary channels and side informations. In some special cases of interest, it is proved that this digital scheme is optimal and that separation holds. However, it is also shown through a simple counterexample with a binary source that a pure analog scheme can outperform the digital one while being optimal. According to these observations and assuming matched bandwidth, a novel hybrid digital/analog scheme that aims to gather the advantages of both digital and analog ones is then presented. In the quadratic Gaussian setup when side information is only present at the eavesdropper, this strategy is proved to be optimal. Furthermore, it outperforms both digital and analog schemes, and cannot be achieved via time-sharing. By means of an appropriate coding, the presence of any statistical difference among the side informations, the channel noises, and the distortion at Bob can be fully exploited in terms of secrecy.Comment: To appear in IEEE Transactions on Information Theor
    corecore