9,805 research outputs found
Endoscopic stapedectomy our experience
Stapedecomy traditionally is performed using operating microscope. Eventhough it is a time tested procedure, it had its own draw backs. In patients with excessive bony overhang it would bedifficult to access the middle ear cavity using operating microscope. Using Endoscope authors were able to circumvent these difficulties. Endoscopic examination of middle ear cavity was invogue since 1992. 10 Advantages of using endoscope include: Excellent exposure, visualization of entire middle ear cavity with ease, excellent crystal clear images. All the steps of stapedectomycould easily be performed using endoscope. Only flip side being the use of only one hand for the entire procedure as the non dominant hand will be holding the endoscope.
Functional anatomy of the middle and inner ears of the red fox, in comparison to domestic dogs and cats
Anatomical middle and inner ear parameters are often used to predict hearing sensitivities of mammalian species. Given that ear morphology is substantially affected both by phylogeny and body size, it is interesting to consider whether the relatively small anatomical differences expected in related species of similar size have a noticeable impact on hearing. We present a detailed anatomical description of the middle and inner ears of the red fox Vulpes vulpes, a widespread, wild carnivore for which a behavioural audiogram is available. We compare fox ears to those of the well‐studied and similarly sized domestic dog and cat, taking data for dogs and cats from the literature as well as providing new measurements of basilar membrane (BM) length and hair cell numbers and densities in these animals. Our results show that the middle ear of the red fox is very similar to that of dogs. The most obvious difference from that of the cat is the lack of a fully formed bony septum in the bulla tympanica of the fox. The cochlear structures of the fox, however, are very like those of the cat, whereas dogs have a broader BM in the basal cochlea. We further report that the mass of the middle ear ossicles and the bulla volume increase with age in foxes. Overall, the ear structures of foxes, dogs and cats are anatomically very similar, and their behavioural audiograms overlap. However, the results of several published models and correlations that use middle and inner ear measurements to predict aspects of hearing were not always found to match well with audiogram data, especially when it came to the sharper tuning in the fox audiogram. This highlights that, although there is evidently a broad correspondence between structure and function, it is not always possible to draw direct links when considering more subtle differences between related species
Dual contribution to amplification in the mammalian inner ear
The inner ear achieves a wide dynamic range of responsiveness by mechanically
amplifying weak sounds. The enormous mechanical gain reported for the mammalian
cochlea, which exceeds a factor of 4,000, poses a challenge for theory. Here we
show how such a large gain can result from an interaction between amplification
by low-gain hair bundles and a pressure wave: hair bundles can amplify both
their displacement per locally applied pressure and the pressure wave itself. A
recently proposed ratchet mechanism, in which hair-bundle forces do not feed
back on the pressure wave, delineates the two effects. Our analytical
calculations with a WKB approximation agree with numerical solutions.Comment: 4 pages, 4 figure
Descriptive Anatomy and Three-Dimensional Reconstruction of the Skull of the Early Tetrapod Acanthostega gunnari Jarvik, 1952
The early tetrapod Acanthostega gunnari is an iconic fossil taxon exhibiting skeletal morphology reflecting the transition of vertebrates from water onto land. Computed tomography data of two Acanthostega skulls was segmented using visualization software to digitally separate bone from matrix and individual bones of the skull from each other. A revised description of cranial and lower jaw anatomy in this taxon based on CT data includes new details of sutural morphology, the previously undescribed quadrate and articular bones, and the mandibular symphysis. Sutural morphology is used to infer loading regime in the skull during feeding, and suggests Acanthostega used its anterior jaws to initially seize prey while smaller posterior teeth were used to restrain struggling prey during ingestion. Novel methods were used to repair and retrodeform the skull, resulting in a three-dimensional digital reconstruction that features a longer postorbital region and more strongly hooked anterior lower jaw than previous attempts while supporting the presence of a midline gap between the nasals and median rostrals
First Natural Endocranial Cast of a Fossil Snake (Cretaceous of Patagonia, Argentina)
In this study, we describe a natural endocranial cast included in a partially preserved medium‐sized skull of the Upper Cretaceous South American snake Dinilysia patagonica. The endocast is composed of sedimentary filling of the cranial cavity in which the posterior brain, the vessels, the cranial nerves, and the inner ear surrounded by delicate semicircular canals, are represented. It is simple in form, with little differentiation between the three main areas (Forebrain, Midbrain, and Hindbrain), and without flexures. The nervous system is well preserved. The posterior brain surface is smooth, except for two small prominences that make up the cerebellum. A large inner ear is preserved on the right side; it consists of a voluminous central mass, the vestibule, which occupies most of the space defined by the three semicircular canals. In particular, the lateral semicircular canal is very close to the vestibule. This characteristic, in combination with the medium to large body size of Dinilysia, its large skull and dorsally exposed orbits, and vertebrae bearing a rather high neural spine on a depressed neural arch, suggests that this snake would have had a semifossorial lifestyle.Fil: Trivino, Laura Natalia. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. División Zoología de Vertebrados. Sección Herpetologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Albino, Adriana Maria. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Biología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dozo, Maria Teresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Geología y Paleontología; ArgentinaFil: Williams, Jorge Daniel. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. División Zoología de Vertebrados. Sección Herpetologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
The development of the skull of the Egyptian cobra Naja h. haje (Squamata: Serpentes: Elapidae)
Background: The study of craniofacial development is important in understanding the ontogenetic processes behind morphological diversity. A complete morphological description of the embryonic skull development of the Egyptian cobra, Naja h. haje, is lacking and there has been little comparative discussion of skull development either among elapid snakes or between them and other snakes. Methodology/Principal Findings: We present a description of skull development through a full sequence of developmental stages of the Egyptian cobra, and compare it to other snakes. Associated soft tissues of the head are noted where relevant. The first visible ossification centres are in the supratemporal, prearticular and surangular, with slight ossification visible in parts of the maxilla, prefrontal, and dentary. Epiotic centres of ossification are present in the supraoccipital, and the body of the supraoccipital forms from the tectum posterior not the tectum synoticum. The venom glands are visible as distinct bodies as early at stage 5 and enlarge later to extend from the otic capsule to the maxilla level with the anterior margin of the eye. The gland becomes more prominent shortly before hatching, concomitant with the development of the fangs. The tongue shows incipient forking at stage 5, and becomes fully bifid at stage 6. Conclusions/significance: We present the first detailed staging series of cranial development for the Egyptian cobra, Naja h. haje. This is one of the first studies since the classical works of G. de Beer and W. Parker that provides a detailed description of cranial development in an advanced snake species. It allows us to correct errors and misinterpretations in previous accounts which were based on a small sample of specimens of uncertain age. Our results highlight potentially significant variation in supraoccipital formation among squamates and the need for further research in this area
Cochlear-bone wave can yield a hearing sensation as well as otoacoustic emission
A hearing sensation arises when the elastic basilar membrane inside the
cochlea vibrates. The basilar membrane is typically set into motion through
airborne sound that displaces the middle ear and induces a pressure difference
across the membrane. A second, alternative pathway exists, however: stimulation
of the cochlear bone vibrates the basilar membrane as well. This pathway,
referred to as bone conduction, is increasingly used in the construction of
headphones that bypass the ear canal and the middle ear. Furthermore,
otoacoustic emissions, sounds generated inside the ear and measured in the ear
canal, may not involve the usual wave on the basilar membrane, suggesting that
additional cochlear structures are involved in their propagation. Here we
describe a novel propagation mode that emerges through deformation of the
cochlear bone. Through a mathematical and computational approach we demonstrate
that this wave can explain bone conduction as well as numerous properties of
otoacoustic emissions.Comment: 37 pages, 4 figures, Nature Communications 201
- …
