2 research outputs found

    Modelling atmospheric ozone concentration using machine learning algorithms

    Get PDF
    Air quality monitoring is one of several important tasks carried out in the area of environmental science and engineering. Accordingly, the development of air quality predictive models can be very useful as such models can provide early warnings of pollution levels increasing to unsatisfactory levels. The literature review conducted within the research context of this thesis revealed that only a limited number of widely used machine learning algorithms have been employed for the modelling of the concentrations of atmospheric gases such as ozone, nitrogen oxides etc. Despite this observation the research and technology area of machine learning has recently advanced significantly with the introduction of ensemble learning techniques, convolutional and deep neural networks etc. Given these observations the research presented in this thesis aims to investigate the effective use of ensemble learning algorithms with optimised algorithmic settings and the appropriate choice of base layer algorithms to create effective and efficient models for the prediction and forecasting of specifically, ground level ozone (O3). Three main research contributions have been made by this thesis in the application area of modelling O3 concentrations. As the first contribution, the performance of several ensemble learning (Homogeneous and Heterogonous) algorithms were investigated and compared with all popular and widely used single base learning algorithms. The results have showed impressive prediction performance improvement obtainable by using meta learning (Bagging, Stacking, and Voting) algorithms. The performances of the three investigated meta learning algorithms were similar in nature giving an average 0.91 correlation coefficient, in prediction accuracy. Thus as a second contribution, the effective use of feature selection and parameter based optimisation was carried out in conjunction with the application of Multilayer Perceptron, Support Vector Machines, Random Forest and Bagging based learning techniques providing significant improvements in prediction accuracy. The third contribution of research presented in this thesis includes the univariate and multivariate forecasting of ozone concentrations based of optimised Ensemble Learning algorithms. The results reported supersedes the accuracy levels reported in forecasting Ozone concentration variations based on widely used, single base learning algorithms. In summary the research conducted within this thesis bridges an existing research gap in big data analytics related to environment pollution modelling, prediction and forecasting where present research is largely limited to using standard learning algorithms such as Artificial Neural Networks and Support Vector Machines often available within popular commercial software packages

    Using machine learning for automated de-identification and clinical coding of free text data in electronic medical records

    Full text link
    The widespread adoption of Electronic Medical Records (EMRs) in hospitals continues to increase the amount of patient data that are digitally stored. Although the primary use of the EMR is to support patient care by making all relevant information accessible, governments and health organisations are looking for ways to unleash the potential of these data for secondary purposes, including clinical research, disease surveillance and automation of healthcare processes and workflows. EMRs include large quantities of free text documents that contain valuable information. The greatest challenges in using the free text data in EMRs include the removal of personally identifiable information and the extraction of relevant information for specific tasks such as clinical coding. Machine learning-based automated approaches can potentially address these challenges. This thesis aims to explore and improve the performance of machine learning models for automated de-identification and clinical coding of free text data in EMRs, as captured in hospital discharge summaries, and facilitate the applications of these approaches in real-world use cases. It does so by 1) implementing an end-to-end de-identification framework using an ensemble of deep learning models; 2) developing a web-based system for de-identification of free text (DEFT) with an interactive learning loop; 3) proposing and implementing a hierarchical label-wise attention transformer model (HiLAT) for explainable International Classification of Diseases (ICD) coding; and 4) investigating the use of extreme multi-label long text transformer-based models for automated ICD coding. The key findings include: 1) An end-to-end framework using an ensemble of deep learning base-models achieved excellent performance on the de-identification task. 2) A new web-based de-identification software system (DEFT) can be readily and easily adopted by data custodians and researchers to perform de-identification of free text in EMRs. 3) A novel domain-specific transformer-based model (HiLAT) achieved state-of-the-art (SOTA) results for predicting ICD codes on a Medical Information Mart for Intensive Care (MIMIC-III) dataset comprising the discharge summaries (n=12,808) that are coded with at least one of the most 50 frequent diagnosis and procedure codes. In addition, the label-wise attention scores for the tokens in the discharge summary presented a potential explainability tool for checking the face validity of ICD code predictions. 4) An optimised transformer-based model, PLM-ICD, achieved the latest SOTA results for ICD coding on all the discharge summaries of the MIMIC-III dataset (n=59,652). The segmentation method, which split the long text consecutively into multiple small chunks, addressed the problem of applying transformer-based models to long text datasets. However, using transformer-based models on extremely large label sets needs further research. These findings demonstrate that the de-identification and clinical coding tasks can benefit from the application of machine learning approaches, present practical tools for implementing these approaches, and highlight priorities for further research
    corecore