62 research outputs found

    Unsupervised Anomaly Detection of High Dimensional Data with Low Dimensional Embedded Manifold

    Get PDF
    Anomaly detection techniques are supposed to identify anomalies from loads of seemingly homogeneous data and being able to do so can lead us to timely, pivotal and actionable decisions, saving us from potential human, financial and informational loss. In anomaly detection, an often encountered situation is the absence of prior knowledge about the nature of anomalies. Such circumstances advocate for ‘unsupervised’ learning-based anomaly detection techniques. Compared to its ‘supervised’ counterpart, which possesses the luxury to utilize a labeled training dataset containing both normal and anomalous samples, unsupervised problems are far more difficult. Moreover, high dimensional streaming data from tons of interconnected sensors present in modern day industries makes the task more challenging. To carry out an investigative effort to address these challenges is the overarching theme of this dissertation. In this dissertation, the fundamental issue of similarity measure among observations, which is a central piece in any anomaly detection techniques, is reassessed. Manifold hypotheses suggests the possibility of low dimensional manifold structure embedded in high dimensional data. In the presence of such structured space, traditional similarity measures fail to measure the true intrinsic similarity. In light of this revelation, reevaluating the notion of similarity measure seems more pressing rather than providing incremental improvements over any of the existing techniques. A graph theoretic similarity measure is proposed to differentiate and thus identify the anomalies from normal observations. Specifically, the minimum spanning tree (MST), a graph-based approach is proposed to approximate the similarities among data points in the presence of high dimensional structured space. It can track the structure of the embedded manifold better than the existing measures and help to distinguish the anomalies from normal observations. This dissertation investigates further three different aspects of the anomaly detection problem and develops three sets of solution approaches with all of them revolving around the newly proposed MST based similarity measure. In the first part of the dissertation, a local MST (LoMST) based anomaly detection approach is proposed to detect anomalies using the data in the original space. A two-step procedure is developed to detect both cluster and point anomalies. The next two sets of methods are proposed in the subsequent two parts of the dissertation, for anomaly detection in reduced data space. In the second part of the dissertation, a neighborhood structure assisted version of the nonnegative matrix factorization approach (NS-NMF) is proposed. To detect anomalies, it uses the neighborhood information captured by a sparse MST similarity matrix along with the original attribute information. To meet the industry demands, the online version of both LoMST and NS-NMF is also developed for real-time anomaly detection. In the last part of the dissertation, a graph regularized autoencoder is proposed which uses an MST regularizer in addition to the original loss function and is thus capable of maintaining the local invariance property. All of the approaches proposed in the dissertation are tested on 20 benchmark datasets and one real-life hydropower dataset. When compared with the state of art approaches, all three approaches produce statistically significant better outcomes. “Industry 4.0” is a reality now and it calls for anomaly detection techniques capable of processing a large amount of high dimensional data generated in real-time. The proposed MST based similarity measure followed by the individual techniques developed in this dissertation are equipped to tackle each of these issues and provide an effective and reliable real-time anomaly identification platform

    Comparison of new anomaly detection technique for wind turbine condition monitoring using gearbox SCADA data

    Get PDF
    Anomaly detection for wind turbine condition monitoring is an active area of research within the wind energy operations and maintenance (O&M) community. In this paper three models were compared for multi-megawatt operational wind turbine SCADA data. The models used for comparison were One-Class Support Vector Machine (OCSVM), Isolation Forest (IF), and Elliptical Envelope (EE). Each of these were compared for the same fault, and tested under various different data configurations. IF and EE have not previously been used for fault detection for wind turbines, and OCSVM has not been used for SCADA data. This paper presents a novel method of condition monitoring that only requires two months of data per turbine. These months were separated by a year, the first being healthy and the second unhealthy. The number of anomalies is compared, with a greater number in the unhealthy month being considered correct. It was found that for accuracy IF and OCSVM had similar performances in both training regimes presented. OCSVM performed better for generic training, and IF performed better for specific training. Overall, IF and OCSVM had an average accuracy of 82% for all configurations considered, compared to 77% for EE

    Power disturbance monitoring through techniques for novelty detection on wind power and photovoltaic generation

    Get PDF
    Novelty detection is a statistical method that verifies new or unknown data, determines whether these data are inliers (within the norm) or outliers (outside the norm), and can be used, for example, in developing classification strategies in machine learning systems for industrial applications. To this end, two types of energy that have evolved over time are solar photovoltaic and wind power generation. Some organizations around the world have developed energy quality standards to avoid known electric disturbances; however, their detection is still a challenge. In this work, several techniques for novelty detection are implemented to detect different electric anomalies (disturbances), which are k-nearest neighbors, Gaussian mixture models, one-class support vector machines, self-organizing maps, stacked autoencoders, and isolation forests. These techniques are applied to signals from real power quality environments of renewable energy systems such as solar photovoltaic and wind power generation. The power disturbances that will be analyzed are considered in the standard IEEE-1159, such as sag, oscillatory transient, flicker, and a condition outside the standard attributed to meteorological conditions. The contribution of the work consists of the development of a methodology based on six techniques for novelty detection of power disturbances, under known and unknown conditions, over real signals in the power quality assessment. The merit of the methodology is a set of techniques that allow to obtain the best performance of each one under different conditions, which constitutes an important contribution to the renewable energy systems.Postprint (published version

    Investigation of isolation forest for wind turbine pitch system condition monitoring using SCADA data

    Get PDF
    Wind turbine pitch system condition monitoring is an active area of research, and this paper investigates the use of the Isolation Forest Machine Learning model and Supervisory Control and Data Acquisition system data for this task. This paper examines two case studies, turbines with hydraulic or electric pitch systems, and uses an Isolation Forest to predict failure ahead of time. This novel technique compared several models per turbine, each trained on a different number of months of data. An anomaly proportion for three different time-series window lengths was compared, to observe trends and peaks before failure. The two cases were compared, and it was found that this technique could detect abnormal activity roughly 12 to 18 months before failure for both the hydraulic and electric pitch systems for all unhealthy turbines, and a trend upwards in anomalies could be found in the immediate run up to failure. These peaks in anomalous behaviour could indicate a future failure and this would allow for on-site maintenance to be scheduled. Therefore, this method could improve scheduling planned maintenance activity for pitch systems, regardless of the pitch system employed

    Hierarchical feature extraction from spatiotemporal data for cyber-physical system analytics

    Get PDF
    With the advent of ubiquitous sensing, robust communication and advanced computation, data-driven modeling is increasingly becoming popular for many engineering problems. Eliminating difficulties of physics-based modeling, avoiding simplifying assumptions and ad hoc empirical models are significant among many advantages of data-driven approaches, especially for large-scale complex systems. While classical statistics and signal processing algorithms have been widely used by the engineering community, advanced machine learning techniques have not been sufficiently explored in this regard. This study summarizes various categories of machine learning tools that have been applied or may be a candidate for addressing engineering problems. While there are increasing number of machine learning algorithms, the main steps involved in applying such techniques to the problems consist in: data collection and pre-processing, feature extraction, model training and inference for decision-making. To support decision-making processes in many applications, hierarchical feature extraction is key. Among various feature extraction principles, recent studies emphasize hierarchical approaches of extracting salient features that is carried out at multiple abstraction levels from data. In this context, the focus of the dissertation is towards developing hierarchical feature extraction algorithms within the framework of machine learning in order to solve challenging cyber-physical problems in various domains such as electromechanical systems and agricultural systems. Furthermore, the feature extraction techniques are described using the spatial, temporal and spatiotemporal data types collected from the systems. The wide applicability of such features in solving some selected real-life domain problems are demonstrated throughout this study
    corecore