212 research outputs found

    Highly efficient schemes for time fractional Allen-Cahn equation using extended SAV approach

    Get PDF
    In this paper, we propose and analyze high order efficient schemes for the time fractional Allen-Cahn equation. The proposed schemes are based on the L1 discretization for the time fractional derivative and the extended scalar auxiliary variable (SAV) approach developed very recently to deal with the nonlinear terms in the equation. The main contributions of the paper consist in: 1) constructing first and higher order unconditionally stable schemes for different mesh types, and proving the unconditional stability of the constructed schemes for the uniform mesh; 2) carrying out numerical experiments to verify the efficiency of the schemes and to investigate the coarsening dynamics governed by the time fractional Allen-Cahn equation. Particularly, the influence of the fractional order on the coarsening behavior is carefully examined. Our numerical evidence shows that the proposed schemes are more robust than the existing methods, and their efficiency is less restricted to particular forms of the nonlinear potentials

    Convergence analysis of variable steps BDF2 method for the space fractional Cahn-Hilliard model

    Full text link
    An implicit variable-step BDF2 scheme is established for solving the space fractional Cahn-Hilliard equation, involving the fractional Laplacian, derived from a gradient flow in the negative order Sobolev space HαH^{-\alpha}, α(0,1)\alpha\in(0,1). The Fourier pseudo-spectral method is applied for the spatial approximation. The proposed scheme inherits the energy dissipation law in the form of the modified discrete energy under the sufficient restriction of the time-step ratios. The convergence of the fully discrete scheme is rigorously provided utilizing the newly proved discrete embedding type convolution inequality dealing with the fractional Laplacian. Besides, the mass conservation and the unique solvability are also theoretically guaranteed. Numerical experiments are carried out to show the accuracy and the energy dissipation both for various interface widths. In particular, the multiple-time-scale evolution of the solution is captured by an adaptive time-stepping strategy in the short-to-long time simulation

    Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations

    Full text link
    Recent results in the literature provide computational evidence that stabilized semi-implicit time-stepping method can efficiently simulate phase field problems involving fourth-order nonlinear dif- fusion, with typical examples like the Cahn-Hilliard equation and the thin film type equation. The up-to-date theoretical explanation of the numerical stability relies on the assumption that the deriva- tive of the nonlinear potential function satisfies a Lipschitz type condition, which in a rigorous sense, implies the boundedness of the numerical solution. In this work we remove the Lipschitz assumption on the nonlinearity and prove unconditional energy stability for the stabilized semi-implicit time-stepping methods. It is shown that the size of stabilization term depends on the initial energy and the perturba- tion parameter but is independent of the time step. The corresponding error analysis is also established under minimal nonlinearity and regularity assumptions

    On Power Law Scaling Dynamics for Time-fractional Phase Field Models during Coarsening

    Full text link
    In this paper, we study the phase field models with fractional-order in time. The phase field models have been widely used to study coarsening dynamics of material systems with microstructures. It is known that phase field models are usually derived from energy variation so that they obey some energy dissipation laws intrinsically. Recently, many works have been published on investigating fractional-order phase field models, but little is known of the corresponding energy dissipation laws. We focus on the time-fractional phase field models and report that the effective free energy and roughness obey a universal power-law scaling dynamics during coarsening. Mainly, the effective free energy and roughness in the time-fractional phase field models scale by following a similar power law as the integer phase field models, where the power is linearly proportional to the fractional order. This universal scaling law is verified numerically against several phase field models, including the Cahn-Hilliard equations with different variable mobilities and molecular beam epitaxy models. This new finding sheds light on potential applications of time fractional phase field models in studying coarsening dynamics and crystal growths

    A Robust Solver for a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation

    Get PDF
    We develop a robust solver for a second order mixed finite element splitting scheme for the Cahn-Hilliard equation. This work is an extension of our previous work in which we developed a robust solver for a first order mixed finite element splitting scheme for the Cahn-Hilliard equaion. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spacial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild.Comment: 17 pages, 3 figures, 4 tables. arXiv admin note: substantial text overlap with arXiv:1709.0400
    corecore