19 research outputs found

    Fault-tolerant additive weighted geometric spanners

    Full text link
    Let S be a set of n points and let w be a function that assigns non-negative weights to points in S. The additive weighted distance d_w(p, q) between two points p,q belonging to S is defined as w(p) + d(p, q) + w(q) if p \ne q and it is zero if p = q. Here, d(p, q) denotes the (geodesic) Euclidean distance between p and q. A graph G(S, E) is called a t-spanner for the additive weighted set S of points if for any two points p and q in S the distance between p and q in graph G is at most t.d_w(p, q) for a real number t > 1. Here, d_w(p,q) is the additive weighted distance between p and q. For some integer k \geq 1, a t-spanner G for the set S is a (k, t)-vertex fault-tolerant additive weighted spanner, denoted with (k, t)-VFTAWS, if for any set S' \subset S with cardinality at most k, the graph G \ S' is a t-spanner for the points in S \ S'. For any given real number \epsilon > 0, we obtain the following results: - When the points in S belong to Euclidean space R^d, an algorithm to compute a (k,(2 + \epsilon))-VFTAWS with O(kn) edges for the metric space (S, d_w). Here, for any two points p, q \in S, d(p, q) is the Euclidean distance between p and q in R^d. - When the points in S belong to a simple polygon P, for the metric space (S, d_w), one algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges and another algorithm to compute a geodesic (k, (\sqrt{10} + \epsilon))-VFTAWS with O(kn(\lg{n})^2) edges. Here, for any two points p, q \in S, d(p, q) is the geodesic Euclidean distance along the shortest path between p and q in P. - When the points in SS lie on a terrain T, an algorithm to compute a geodesic (k, (2 + \epsilon))-VFTAWS with O(\frac{k n}{\epsilon^{2}}\lg{n}) edges.Comment: a few update

    A Spanner for the Day After

    Full text link
    We show how to construct (1+Δ)(1+\varepsilon)-spanner over a set PP of nn points in Rd\mathbb{R}^d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters ϑ,Δ∈(0,1)\vartheta,\varepsilon \in (0,1), the computed spanner GG has O(Δ−cϑ−6nlog⁥n(log⁥log⁥n)6) O\bigl(\varepsilon^{-c} \vartheta^{-6} n \log n (\log\log n)^6 \bigr) edges, where c=O(d)c= O(d). Furthermore, for any kk, and any deleted set B⊆PB \subseteq P of kk points, the residual graph G∖BG \setminus B is (1+Δ)(1+\varepsilon)-spanner for all the points of PP except for (1+ϑ)k(1+\vartheta)k of them. No previous constructions, beyond the trivial clique with O(n2)O(n^2) edges, were known such that only a tiny additional fraction (i.e., ϑ\vartheta) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black box fashion

    Locating Battery Charging Stations to Facilitate Almost Shortest Paths

    Get PDF
    We study a facility location problem motivated by requirements pertaining to the distribution of charging stations for electric vehicles: Place a minimum number of battery charging stations at a subset of nodes of a network, so that battery-powered electric vehicles will be able to move between destinations using "t-spanning" routes, of lengths within a factor t > 1 of the length of a shortest path, while having sufficient charging stations along the way. We give constant-factor approximation algorithms for minimizing the number of charging stations, subject to the t-spanning constraint. We study two versions of the problem, one in which the stations are required to support a single ride (to a single destination), and one in which the stations are to support multiple rides through a sequence of destinations, where the destinations are revealed one at a time

    Robust Geometric Spanners

    Full text link
    Highly connected and yet sparse graphs (such as expanders or graphs of high treewidth) are fundamental, widely applicable and extensively studied combinatorial objects. We initiate the study of such highly connected graphs that are, in addition, geometric spanners. We define a property of spanners called robustness. Informally, when one removes a few vertices from a robust spanner, this harms only a small number of other vertices. We show that robust spanners must have a superlinear number of edges, even in one dimension. On the positive side, we give constructions, for any dimension, of robust spanners with a near-linear number of edges.Comment: 18 pages, 8 figure

    A Spanner for the Day After

    Get PDF
    We show how to construct (1+epsilon)-spanner over a set P of n points in R^d that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters theta, epsilon in (0,1), the computed spanner G has O(epsilon^{-7d} log^7 epsilon^{-1} * theta^{-6} n log n (log log n)^6) edges. Furthermore, for any k, and any deleted set B subseteq P of k points, the residual graph G B is (1+epsilon)-spanner for all the points of P except for (1+theta)k of them. No previous constructions, beyond the trivial clique with O(n^2) edges, were known such that only a tiny additional fraction (i.e., theta) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one dimensional construction in a black box fashion

    A spanner for the day after

    Get PDF
    We show how to construct (1 + Δ)-spanner over a set P of n points in ℝd that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters ϑ, Δ ∈ (0, 1), the computed spanner G has O(Δ−7d log7 Δ−1 · ϑ−6n log n(log log n)6) edges. Furthermore, for any k, and any deleted set B ⊆ P of k points, the residual graph G \ B is (1 + Δ)-spanner for all the points of P except for (1 + ϑ)k of them. No previous constructions, beyond the trivial clique with O(n2) edges, were known such that only a tiny additional fraction (i.e., ϑ) lose their distance preserving connectivity. Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one dimensional construction in a black box fashion.</p

    A spanner for the day after

    Get PDF
    We show how to construct (1+Δ)-spanner over a set P of n points in Rd that is resilient to a catastrophic failure of nodes. Specifically, for prescribed parameters ϑ,Δ∈(0,1), the computed spanner G has O(Δ−cϑ−6nlogn(loglogn)6) edges, where c=O(d). Furthermore, for any k, and any deleted set B⊆P of k points, the residual graph G∖B is (1+Δ)-spanner for all the points of P except for (1+ϑ)k of them. No previous constructions, beyond the trivial clique with O(n2) edges, were known such that only a tiny additional fraction (i.e., ϑ) lose their distance preserving connectivity.Our construction works by first solving the exact problem in one dimension, and then showing a surprisingly simple and elegant construction in higher dimensions, that uses the one-dimensional construction in a black box fashion

    Testing Stability Properties in Graphical Hedonic Games

    Full text link
    In hedonic games, players form coalitions based on individual preferences over the group of players they belong to. Several concepts to describe the stability of coalition structures in a game have been proposed and analyzed. However, prior research focuses on algorithms with time complexity that is at least linear in the input size. In the light of very large games that arise from, e.g., social networks and advertising, we initiate the study of sublinear time property testing algorithms for existence and verification problems under several notions of coalition stability in a model of hedonic games represented by graphs with bounded degree. In graph property testing, one shall decide whether a given input has a property (e.g., a game admits a stable coalition structure) or is far from it, i.e., one has to modify at least an Ï”\epsilon-fraction of the input (e.g., the game's preferences) to make it have the property. In particular, we consider verification of perfection, individual rationality, Nash stability, (contractual) individual stability, and core stability. Furthermore, we show that while there is always a Nash-stable coalition (which also implies individually stable coalitions), the existence of a perfect coalition can be tested. All our testers have one-sided error and time complexity that is independent of the input size

    Reliable Geometric Spanners

    Get PDF
    corecore