5 research outputs found

    Cyclic Pursuit on Compact Manifolds

    Get PDF
    We study a form of cyclic pursuit on Riemannian manifolds with positive injectivity radius. We conjecture that on a compact manifold, the piecewise geodesic loop formed by connecting consecutive pursuit agents either collapses in finite time or converges to a closed geodesic. The main result is that this conjecture is valid for nonpositively curved compact manifolds.Comment: Typos and minor details fixe

    Rendezvous Without Coordinates

    Full text link

    Cyclic pursuit without coordinates: Convergence to regular polygon formations

    Get PDF
    Abstract-We study a multi-agent cyclic pursuit model where each of the identical agents moves like a Dubins car and maintains a fixed heading angle with respect to the next agent. We establish that stationary shapes for this system are regular polygons. We derive a sufficient condition for local convergence to such regular polygon formations, which takes the form of an inequality connecting the angles of the regular polygon with the heading angle of the agents. A block-circulant structure of the system's linearization matrix in suitable coordinates facilitates and elucidates our analysis. Our results are complementary to the conditions for rendezvous obtained in earlier work [Yu et al., IEEE Trans. Autom. Contr., Feb. 2012]

    Cyklisk jakt och flykt i planet

    Get PDF
    Let n bugs constitute the corners of an n-sided polygon. If the bugs cyclically pursue each other, the positions of the bugs will satisfy a system of ordinary differential equations, which we study. We examine the system for different n, but focus on the case n=3. When n=3, the bugs form a triangle. In this case, the solution will converge to some point. We study how the convergence occur. Ignoring translation, rotation and scaling, the triangle converges to a line. Further, we also consider when the three bugs escape from each other. If we again ignore rotation, translation and scaling, the triangle converges to an equilateral triangle. Finally, most theory in this thesis is already known, but we present a new proof for the convergence when three bugs pursuit each other.Vi har n=3 insekter: S1, S2 och S3 placerade i ett plan. Insekterna kommer dĂ„, oavsett hur de placeras i planet, kunna ses som hörnen i en triangel. Vi lĂ„ter sedan insekterna jaga varandra cykliskt. Hur ser vĂ€gen ut som insekterna tar? Redan 1877 formulerade Edouard Lucas denna frĂ„ga och sedan dess har problemet studerats och Ă€ven kompletterats med nya frĂ„gor av flera forskare. Till exempel kan man frĂ„ga sig om alla insekter kommer att kollidera samtidigt eller inte. Dessutom kan antalet insekter ökas. I den hĂ€r uppsatsen kommer vi framförallt att fokusera pĂ„ nĂ€r insekterna bildar en (ickedegenererad) triangel. I det fallet kommer alla insekterna att krocka samtidigt, Ă€ven om en insekt Ă€r lĂ„ngt ifrĂ„n de tvĂ„ andra, sĂ„ att triangeln som bildas Ă€r oliksidig. Om antalet insekter Ă€r större Ă€r det inte sĂ€kert att alla krockar samtidigt. LĂ„t nu antalet insekter vara tre. Insekterna kommer alltsĂ„ att krocka samtidigt, men hur rör de sig i förhĂ„llande till varandra fram tills kollisionen? Det kan visas att om insekternas startpositioner inte bildar en liksidig triangel, sĂ„ kommer insekternas positioner gĂ„ mot att ligga pĂ„ en linje. För ett större antal insekter verkar det som att sĂ„ lĂ€nge n<7 gĂ„r insekterna mot att ligga pĂ„ en linje, vilket överensstĂ€mmer med fallet ovan med tre insekter. DĂ€remot om n Ă€r större Ă€n eller lika med 7 tycks insekterna konvergera mot en regelbunden polygon innan kollisionen sker. Som nĂ€mndes tidigare, Ă€r det inte sĂ€kert att alla insekter krockar samtidigt om antalet insekter Ă€r fler Ă€n tre. Om vi har fyra insekter kommer inte alla att krocka samtidigt om insekternas startpositioner bildar en konkav fyrhörning. DĂ€remot kommer de kollidera samtidigt om fyrhörningen som insekterna utgör Ă€r konvex. Om antalet insekter Ă€r fler Ă€n fyra, Ă€r det vanligaste att alla insekter krockar samtidigt. Vidare, kan insekterna istĂ€llet fly frĂ„n varandra. Även hĂ€r fokuserar vi pĂ„ n=3. I det fallet kommer triangeln som insekterna bildar att expandera obegrĂ€nsat men vinklarna kommer konvergera mot pi/3. Triangeln gĂ„r alltsĂ„ mot att bli liksidig

    Toward a Framework for Systematically Categorizing Future UAS Threat Space

    Get PDF
    Title from PDF of title page, viewed September 21, 2022Dissertation advisor: Travis FieldsVitaIncludes bibliographical references (pages 241-270)Dissertation (Ph.D.)--Department of Civil and Mechanical Engineering, Department of Electrical and Computer Engineering. University of Missouri--Kansas City, 2021The development of unmanned aerial vehicles (UAVs) is occurring as fast or faster than any other innovation throughout the course of human history. Building an effective means of defending against threats posed by malicious applications of novel technology is imperative in the current global landscape. Gone are the days where the enemy and the threat it poses are well defined and understood. Defensive technologies have to be modular and able to adapt to a threat technology space which is likely to recycle several times over during the course of a single defense system acquisition cycle. This manuscript wrestles with understanding the unique threat posed by UAVs and related technologies. A thorough taxonomy of the problem is given including projections for how the defining characteristics of the problem are likely to change and grow in the near future. Next, a discussion of the importance of tactics related to the problem of a rapidly changing threat space is provided. A discussion of case studies related to lessons learned from military acquisition programs and pivotal technological innovations in the course of history are given. Multiple measures of success are proposed which are designed to allow for meaningful comparisons and honest evaluations of capabilities. These measures are designed to facilitate discussions by providing a common, and comprehensible language that accounts for the vast complexity of the problem space without getting bogged down by the details. Lastly, predictions for the future threat space comprising UAVs is given. The contributions of this work are thus threefold. Firstly, an analytic framework is presented including a detailed parameterization of the problem as well as various solution techniques borrowed from a variety of fields. Secondly, measures of success are presented which attempt to compare the effectiveness of various systems by converting to expected values in terms of effective range, or extending the popular concept of kill chain and collapsing effectiveness into units of time. A novel technique for measuring effectiveness is presented whereby effectiveness is composed of various individual probabilities. Probabilities and associated distributions can be combined according to the rules of joint probabilities and distributions and allows performance against a probabilistic threat to be measured succinctly and effectively. The third contribution concerns predictions made with respect to the UAS threat space in the future. These predictions are designed to allow for defensive systems to be developed with a high expected effectiveness against current and future threats. Essentially this work comprises a first attempt toward developing a complete framework related to engagement and mission level modeling of a generic defensive system (or combination of systems) in the face of current and future threats presented by UAS.Introduction -- Literature review -- War gaming -- Measures of success -- Conclusion
    corecore