12,593 research outputs found

    Distributed operating systems

    Get PDF
    In the past five years, distributed operating systems research has gone through a consolidation phase. On a large number of design issues there is now considerable consensus between different research groups.\ud \ud In this paper, an overview of recent research in distributed systems is given. In turn, the paper discusses overall system structure, protection issues, file system designs, problems and solutions for fault tolerance and a mechanism that is rapidly becoming very important for efficient distributed systems design: hints.\ud \ud An attempt was made to provide sufficient references to interesting research projects for the reader to find material for more detailed study

    Investigation of the applicability of a functional programming model to fault-tolerant parallel processing for knowledge-based systems

    Get PDF
    In a fault-tolerant parallel computer, a functional programming model can facilitate distributed checkpointing, error recovery, load balancing, and graceful degradation. Such a model has been implemented on the Draper Fault-Tolerant Parallel Processor (FTPP). When used in conjunction with the FTPP's fault detection and masking capabilities, this implementation results in a graceful degradation of system performance after faults. Three graceful degradation algorithms have been implemented and are presented. A user interface has been implemented which requires minimal cognitive overhead by the application programmer, masking such complexities as the system's redundancy, distributed nature, variable complement of processing resources, load balancing, fault occurrence and recovery. This user interface is described and its use demonstrated. The applicability of the functional programming style to the Activation Framework, a paradigm for intelligent systems, is then briefly described

    ISIS and META projects

    Get PDF
    The ISIS project has developed a new methodology, virtual synchony, for writing robust distributed software. High performance multicast, large scale applications, and wide area networks are the focus of interest. Several interesting applications that exploit the strengths of ISIS, including an NFS-compatible replicated file system, are being developed. The META project is distributed control in a soft real-time environment incorporating feedback. This domain encompasses examples as diverse as monitoring inventory and consumption on a factory floor, and performing load-balancing on a distributed computing system. One of the first uses of META is for distributed application management: the tasks of configuring a distributed program, dynamically adapting to failures, and monitoring its performance. Recent progress and current plans are reported
    corecore