2,038 research outputs found

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Neutral Network Adaptive Filter with Application to Ocean Current Energy Estimation

    Get PDF
    This chapter proposes a new approach for the design of an adaptive filter (AF), which is based on an artificial neural network (NN) structure for estimating the system state. The NNs are now widely used as a technology offering a way to solve complex and nonlinear problems such as time-series forecasting, process control, parameter state estimation, and fault diagnosis. The proposed NN-based adaptive filtering (NNAF) is designed by considering the filtering algorithm as an input–output system and two-stage optimization procedure. The first concerns a learning process where the weights of the NNAF are estimated to minimize the error between the filtered state and the state samples generated by a numerical model. The adaptation is carried out next to minimize the mean prediction error (MPE) of the system outputs (error between the observations and the system output forecast) subject to the coefficients associated with the estimated NN weights. Simulation results for different numerical models, especially for state estimation of the chaotic Lorenz system as well as for the ocean current at different deep layers which is important for renewable energy device placements, are presented to show the efficiency of the NNAF
    corecore