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Chapter

Neutral Network Adaptive Filter
with Application to Ocean Current
Energy Estimation

Hong Son Hoang and Remy Bavaille

Abstract

This chapter proposes a new approach for the design of an adaptive filter (AF),
which is based on an artificial neural network (NN) structure for estimating the
system state. The NNs are now widely used as a technology offering a way to solve
complex and nonlinear problems such as time-series forecasting, process control,
parameter state estimation, and fault diagnosis. The proposed NN-based adaptive
filtering (NNAF) is designed by considering the filtering algorithm as an input-
output system and two-stage optimization procedure. The first concerns a learning
process where the weights of the NNAF are estimated to minimize the error
between the filtered state and the state samples generated by a numerical model.
The adaptation is carried out next to minimize the mean prediction error (MPE) of
the system outputs (error between the observations and the system output forecast)
subject to the coefficients associated with the estimated NN weights. Simulation
results for different numerical models, especially for state estimation of the chaotic
Lorenz system as well as for the ocean current at different deep layers which is
important for renewable energy device placements, are presented to show the
efficiency of the NNAF.

Keywords: neural network, Kalman filter, adaptive filter, machine learning,
minimum prediction error approach, ocean current energy

1. Introduction

In this chapter, we develop an NNAF for solving filtering problems, especially
for dynamic systems of high dimension (an order of 10’-108).

Optimal filtering originated from the astronomical studies at the end of the
eighteenth century. It is worth of mentioning the early works on the filtering [1, 2],
where the theory of linear minimum-variance filters is developed independently.
In Ref. [1], the filter is developed to estimate the desired value of a noisy signal,
whereas the filter in Ref. [2] minimizes the mean squared error between the
estimated random process and the desired process. These two works constitute a
foundation for the celebrated Kalman filter (KF) [3], which processes the measure-
ments streaming in continuously and updates the estimate of the signal recursively
upon the arrival of each measurement.

Under the condition that the system state and observation processes satisfy
linear equations driven by white Gaussian noises, the KF produces the unbiased
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estimate with minimum error variance. Since in most applications, the dynamic and
observation processes are nonlinear, and a linearization technique is applied, which
results in an extended Kalman filter (EKF). However, the EKF is sometimes far
from optimal and even divergent.

The KF has received a great interest for many industrial and engineering fields
since the 1970s, such as the system control, signal processing, robotics, seismology,
communication, economics, and finance.

Direct application of the KF to the data assimilation (DA) in geophysical systems
such as meteorological or oceanic systems is very difficult, even impossible due to
high computational effort and memory storage required to deal with very high
system dimensions, not to say on nonlinearities and uncertainties in statistics of the
model and observation errors.

This situation forces researchers to search new, simple but effective algorithms
to overcome these difficulties. We find here the approaches more appropriate for
solving DA problems in high dimensional systems (HdSs). For example, the 4D-Var
algorithm [4] adjusts a forecast, in space and time, to bring it into closer agreement
with observations. Based on the KF version, the EnKF [5] uses the covariance
estimated from samples instead of solving the Algebraic Riccati matrix equation.
The EnKEF is related to the particle filter (a particle is the same thing as ensemble
member). Particle filtering [6] uses a set of particles (also called samples) to repre-
sent the posterior distribution of some stochastic process given noisy and/or partial
observations. The state-space model can be nonlinear, and the initial state and noise
distributions can be non-Gaussian. These approaches are proposed with strategies
to better control the uncertainty and to make it less non-Gaussian: targeting of
observations, specific treatment of highly nonlinear degrees of freedom, localiza-
tion, and model reduction. A review of the application and usefulness of 4D-Var,
ensemble KF, and particle filters in geosciences is given in Ref. [7]. Among the
efficient approaches for solving DA in high dimensional setting, we note the adap-
tive filtering (AF, see Section 2.2). The idea of the AF will be exploited in this
chapter to improve the neural network filtering (NNF) algorithms.

To make more clear on why the AF is capable of dealing with the difficulties to
assimilate data into the HdSs, it is useful to list the main differences between the KF
and the AF as follows:

1.The KF is aimed at seeking an optimal estimate in the space of measurable
Borel functions of the system state. As for the AF, it seeks the estimate,
optimal in the class of stable filters of a given structure.

2.Optimality: the KF optimizes the mean squared error between the estimate and
true system state given observations up to and included the recent moment k.
The AF minimizes the mean squared error between the observation and the
forecast of system output.

3.The parameters to be estimated in the KF are all components of the system
state, which are time varying. The tuning parameters in the AF are the
parameters in the filter gain, which are assumed to be time invariant. It is
mentioned that the tuning parameters in the AF have no physical sense.

4.Nonlinear matrix equations are to be solved in the KF.
In this chapter, a new NNAF is proposed and tested for solving DA problems

with moderate and high dimensional systems. In particular, the problem of esti-
mating the ocean underwater current by the NNAF will be presented in detail due
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to its importance in producing energy from the ocean. It is mentioned that there are
some basic ways to tap the ocean for its energy such as ocean wave, tidal range, tidal
current, underwater current, and temperature differences in water. All these vari-
ables can be estimated by the NNAF. Ocean currents are suitable locations for
deploying energy extraction devices such as turbines.

At the present, the use of ocean energy remains mainly in the prototype stage.
Last few years, the prototypes are no longer confined only to laboratories, and some
companies have set up commercial scale like RITE Project. In 2006, Verdant Power
installed its first grid-connected Free Flow turbine (see Ref. [8]).

The modern DA techniques represent a computational challenge, even with the
use of parallel computing with thousands of processors. Today, many operational
weather prediction centers use high resolution models, with the number of obser-
vations (provided by a new satellite generation) growing exponentially. There is an
increasing need to address new DA algorithms for HdSs and to improve their
performance. This makes the problem of developing new DA algorithms like NNAF
a great computational challenge.

In this chapter, we propose a new version of an artificial NN-based AF as a new
DA technique, with the objective to construct a high performance forecasting sys-
tem. Recently, the NN has become a popular and helpful model for classification,
clustering, pattern recognition, and prediction in many disciplines. For a survey of
NN applications in the real-world scenario, see Ref. [9]. In Ref. [10], the focus is on
explaining the concept and evolution of machine learning, and some of the popular
machine learning algorithms are described and compared. The work of Ref. [11]
describes the important problems that can arise when applying NN models to
meteorology and oceanography, especially in large-scale, low-frequency studies,
and the attempts to resolve these problems. For data assimilation in chaotic
dynamics using NN, see Ref. [12].

In this chapter, the NNF based on AF developed in Ref. [13] will be constructed
and implemented to produce the estimation results, which will serve as the reference
for performance comparison with other NNFs. The need in developing the AF is to
construct a filter, which is suitable in a new environment. The AF is a powerful device
for signal processing, control applications, identification, inverse modeling, and pre-
diction in an uncertain environment. The AF is formally defined as a self-designing
device with time-varying parameters that are adjusted recursively in order to minimize an
error function—a distance measurement between the reference or desired signal and
the output of the adaptive filter. For a review of the AF, see Ref. [14].

The idea on the AF for data assimilation in HdS has been first presented in Ref.
[13]. The originality of this AF approach lies in considering the AF as a filter, which
minimizes the MPE for the system output, with tuning variables chosen as some
pertinent parameters of the filter gain. This idea allows to optimize the filter per-
formance iteratively, in real time, but not on the basis of a batch of observations as
done in the 4D-Var approach. Moreover, the dimensionless tuning parameters are
chosen in a way to ensure a stability of the filter. This makes the filter always stable
during an optimization process and easily controls the values of tuning parameters.
For a detail presentation of the main characteristics and advantages of the AF in the
context of data assimilation for HdSs, see Section 2.2.

Assimilation experiments will be carried out with synthetic conventional data.
The application of NNF produces a significant reduction in the computational
effort. The goal of using the NN approach is to obtain a similar quality for analyses
with better computational performance for prediction process.

The chapter is organized as follows. In the next section, a brief description of the
NN and the AF for filtering problems is given. Section 3 presents the scheme of the
NNF algorithm. The adaptation scheme for the NNFs is developed in Section 4. In
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Section 5, the simulation experiments on filtering problems for moderate models
are presented. Here first the one-dimensional system is presented to see clearly the
idea and structure of the proposed NNAF. The assimilation experiment with the
widely used Lorenz system, being of chaotic character, is also considered. The
experiment with the ocean model MICOM (Miami Isopycnic Coordinate Ocean
Model) for estimation of the oceanic current in different layers by the NNF and
NNATF is described in Section 6, which demonstrates a possibility of the use of
NNATF for state estimation in very high dimensional systems. It will be seen that the
NNAF can improve considerably the performance of the NNF, which is beneficial
for decision on future planning installation of stations exploiting renewable energy
resources such as the tides and currents, as well as the waves and the thermal energy
that resides in the seas. The conclusions are given in Section 7.

2. Artificial neural network filtering
2.1 Artificial neural network

Artificial neural networks (ANNs or NNs) are computing systems that are inspired
by biological neural networks. Such systems are designed to “learn” by considering
samples to perform the specified tasks. NNs are based on a collection of connected
units or nodes called artificial neurons, which model the neurons in a biological brain.
A standard simple NN scheme is shown in Figure 1. Each connection, like the
synapses in a biological brain, can transmit a signal to other neurons. An artificial
neuron that receives a signal then processes it and can signal neurons connected to it.

Neural networks have been extensively investigated in the context of adaptive
control and system identification [15], but at the present, not so much in state
estimation algorithms.

There are following principal types of NN: (i) feedforward neural network;

(ii) radial basis function neural network; (iii) recurrent neural network (RNN);

(iv) convolutional neural network (CNN); and (v) modular neural network. For
more details, see Ref. [16]. For example, the RNN and CNN are designed to perform
different tasks: the RNN is useful for learning the structure and syntax of the language,
whereas the CNN is complex feedforward NN used for image classification and
recognition because of its high accuracy, and it works by extracting features of image
(identifying faces, individuals, street signs, and many other aspects of visual data).

NN offer the useful properties such as linearity, nonlinearity, learning with
teacher (modification of the NN weights), and adaptivity (capability to adapt their
weights to changes in the surrounding environment). A neuron model scheme is
given in Figure 2. One has

v = Z Wyixi + bi,y, = @(vr) (1)
i1

Input . Output

Figure 1.
Standard simple NN scheme: input, hidden, and output.
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Figure 2.
Model of a neuron.

where W, is the synaptic weight between neuron 7 (at some I layer) and
neuron k at the (I + 1)”

the bias, and y, is the output signal of the neuron k at the (I + 1)™ layer.

There are different activation functions (AcF) such as Step, Linear, and Sigmoid
functions. In Figure 3, three AcFs, Step, Linear, and Sigmoid, are displayed.

One of the most important results concerning a capacity of NN as a powerful
algorithm for function approximation is expressed in terms of the universal
approximation theorem, which states that a feedforward network with a single
hidden layer containing a finite number of neurons can approximate continuous
functions on compact subsets of R” under mild assumptions on the AcF. The
theorem thus states that simple neural networks can represent a wide variety of
functions when given appropriate parameters. One of the first versions of the
theorem was proved by Cybenko in 1989 for sigmoid activation functions [17].

In this chapter, the NN is designed in order to solve assimilation problems. The
design procedure consists in the following steps:

Step 1. The choice of NN structure: What is the structure for the NN? This
concerns the questions on (i) How many layers to be chosen? (ii) What are the
connections between different nodes in different layers? (iii) What are the values to
be initialized for the weights?

Step 2. The choice of variables for the input and output signals.

Step 3. Formulate an optimization problem for estimating the NN weights.

Step 4. Solve the formulated optimization problem: What is the optimization
algorithm to be used?

All these questions will be addressed in details in Sections 3-6.

The objective of this chapter is to show that there exists a simple NNF structure,
which can work efficiently and produce a good estimation results for the system
states. As will be seen, all the NNFs employed in the experiments will have only one
hidden layer. As to the AcFs, three types of AcF will be used: Linear, Sigmoid, and
Step AcFs.

, X1, ..., X, are the inputs, ¢(.) is the activation function, by, is

2.2 Adaptive filter

The AF for state estimation problem is defined as a filter, minimizing the MPE of
the system output. One of the main features of the AF is that it is optimal among

Step AcF  Linear AcF Sigmoid AcF

Figure 3.
Typical AcFs: step, linear, and sigmoid functions.
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members of the set of parameterized state-space innovation representations, with
the vector of pertinent parameters of the gain as a control vector. The assimilation
problem considered in this chapter is formulated as a standard filtering problem

x(k+1) = Ox(k) +w(k) (2)
z(k+1)=Hx(k+1)+v(k+1),k=0,1, .. (3)

where x (k) is the n-dimensional system state at the moment &, and z(k) is the
p-dimensional observation vector. Under standard conditions, related to the noise
sequences v(k),w(k), the optimal in mean squared estimate for x(k) can be obtained
from the system of recursive equations known as the KF.

x(k+1) = Ox(k) + Ke(k + 1), ¢k + 1) =2k + 1) — 0x(k) (4)

where K = K(M) is the gain matrix, which is a function of M :=M(k + 1)—the
error covariance matrix (ECM) for the state prediction error (PE).

ek +1) =x(k +1/k) — x(k +1),x(k + 1/k) = ®x (k) (5)

It is mentioned that in the KF, there exists a nonlinear matrix Riccati equation
for computing M(k + 1). For a system with dimension of order10’-10%, under most
tavorable conditions (perfect knowledge of all system parameters and noise statis-
tics), it is impossible to implement the KF (4) in the most powerful computers due
to computational cost and insufficient memory.

In order to exploit the optimal structure of the filter (4), an AF is proposed in
Ref. [13]. The filter is of the form (4) with the gain K = K(0), which is a function of
some vector @ of pertinent parameters. The choice of gain structure and its param-
eterization (i.e., 0) from the point of view of filter stability is studied in Ref. [18]. In
Ref. [19], a simple and efficient algorithm is proposed for estimating the prediction
error covariance matrix (ECM) based on the hypothesis on the separability of
vertical and horizontal structure of the ECM and its parameterization. This allows to
estimate optimally the unknown parameters of the structured parameterized ECM
as well as to approach numerically the solution of the traditional Nearest Kronecker
Problem in a simple and efficient way.

The optimality of the AF is understood in the Minimum Mean Squared (MMS)
sense, which minimizes the objective function:

J(0) = E[¥(¢)], ¥(¢) = ll<(k; 0)]°
J =J(0) — minargf (6)

with E(.) is the mathematical expectation, and ||.| is the Euclidean norm. In Eq. (6),
¢(k; 0) is the PE for the system outputs, which depends on the vector of parameters 6. It
is seen that if the KF minimizes the MMS filtered error for the system state (in state
space), the AF minimizes the MMS prediction error for the system outputs in the
observation space by tuning some pertinent parameters of the filter gain.

2.3 Simultaneous perturbation stochastic approximation (SPSA)

The choice of Egs. (4) and (6) is important in many aspects in order to obtain a
simple and efficient data assimilation algorithm. The idea lying behind Eqgs. (4) and
(6) is to select the vector 6 € © consisting of some pertinent parameters as control
variables for minimizing the cost function (6). Here © is the set of admissible values
of 0, which ensure a filter stability.
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The solution to the problem (6) can be found iteratively using a stochastic
optimization (SA) algorithm.

Ok +1) =0(k) —y(k+1)Vo¥[c(k +1;0(k))] (7)

where y(k) is a sequence of positive scalars satisfying some conditions to guar-
antee a convergence of the estimation procedure. The standard conditions are

(e8]

r(k)>0, > y(k) = 00, 3 (k) < o0 (8)

(o]
k=1 k=1

The algorithm of Egs. (4), (8), (11) is very simple to implement: at the k"
assimilation instant, we need to integrate the numerical model ® by x (k) to produce
the forecast x(k + 1/k) and to update (k) according to Eq. (7). The algorithm of
Eq. (7) is completely defined if the gradient of the sample cost function
VoW¥[c(k + 1; 0(k))| is available. This gradient can be computed using the adjoint
equation (AE) approach [4]. However, writing the AE code is very complicated and
hard task for complex physical systems. Moreover, it requires a linearization of the
system (2) and (4).

A much less computational burden can be achieved by measuring the sample
objective function (but not based on a gradient formula): one approximates the
gradient using the values of the cost function [on the basis of finite difference
scheme (FDSA)]. This can be done by applying a so-called component-wise
derivative approximation algorithm. However, for high-dimensional systems, this
algorithm is inapplicable: for approximation of each partial derivative, we need to
make two integrations of the model (2).

Let us look at the class of SPSA algorithms [20, 21]. The algorithm SPSA is of the
same structure as that of FDSA, with the difference that it perturbs not each
component of 6 separably, but perturbs stochastically and simultaneously all its

components. Concretely, let Ay := (Ag 1, ..., Ak,n)T be a random vector, Ay ;,i =
1, ..,n are Bernoulli independent identically distributed (iid). The gradient of the
sample objective function is estimated as

g=Vo¥ = (g, »g,) s 9)
gi i [\P(Q(k) + ckAk) - ‘P(Q(k) e CkAk)]/(zckAk,i>’i — 19 PN (10)

One sees from Egs. (9) and (10) that all the directions in the parameter space are
perturbed at the same time (the numerator is identical in all components). Thus,
SPSA uses only two (or three) times the direct integration of the model, indepen-
dently on the dimension of 6, which makes it possible to apply to high dimensional
optimization problems. No development of the AE code is needed. Generally, SPSA
converges in the same number of iterations as the FDSA, and it follows approxi-
mately the steepest descent direction, behaving like the gradient method [20, 21]. In
fact, SPSA, with a random search direction, does not follow exactly the gradient
path. In average, though, it tracks the gradient nearly because the gradient approx-
imation is almost an unbiased estimator of the gradient, as shown in Refs. [20, 21].
For SPSA algorithm, the conditions for the sequence of positive ¢, are

>0, Y cp =00, ¥ (y(k)/ck)* <o (11)

)
k=1 k=1

where y(k) satisfies (8).
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3. NN filtering (NNF)

Let us return to the input-output system (2)—(3). Instead of the AF, we will
construct a NNF for estimating the system state x(k) based on the set of observations
from beginning up to the moment k. According to the NN scheme, we have to define
the set of inputs and the set of output signals. These two sets are introduced as

Spi={%m (k /e — 1),2(k)}, So = {don (k) } (12)

where S; is the set of inputs, and S is the set of output signals, and the estimate
Xnn(k/k — 1) = ®xy, (k — 1) is the forecast obtained from the integration of
Xnn(k — 1) by the numerical model ®. It is mentioned that x,, (k — 1) is the filtered
estimate produced by the NNF, and symbolically, it is obtained by application of the
NNF on the basis of the inputs S; subject to the weights W (k),

Xoun (k) = f  Konn (ke [k — 2),2(k); W (k)] (13)

The difference between x,, (k) in Eq. (13) and x(k) in Eq. (4) is that x,, (k) is the
estimate produced by the NNF, which is of the NN structure. Let us introduce a
new model

X (e + 1) = @, () + Wy (k) (14)

with w,, (k) being a stochastic process, which may be different from w(k). The
reason is that in practice we are given not exactly the information on the process
w(k) (in the experiments for simplicity, we assume w,, (k) = 0). The vector x,,(k)
will serve as samples for learning process to estimate the NN parameters W. For
illustration, one scheme of NNF structure for the system with two-dimensional
state and two-dimensional observation vector is given in Figure 4.

In Figure 4, W (i,j) denotes the weight between the i node at the [ layer and
the j node at the next layer. The algorithm for updating the weights in the NNF
looks as follows:

Algorithm 3.1 (Learning algorithm for estimating NNF weights).

Suppose the set of observations z(k),k =1, ..., N is available. At the moment
k = 1, let the a priori values w, (k —1;i,j), Xun(k/k — 1) be given. Suppose we are
given the set of observations z(k),k =1, ..., N.

Step 1. Pass the inputs x,,,(k/k — 1), z(k) through the NNF. The NNF produces
the output (estimate) X, (k).

Step 2. Compute the state error e, (k) = %, (k) — X, (k).

Step 3. Using the SPSA algorithm to update the NNF weights according to

Figure 4.
Scheme of NNF structure.
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W (k)

Tk +17k) l
i)
_ ® .
W (k1)

i (k/k-1) | t
f..lx..(kfk n,z(k)l

:(H —

Figure 5.
Scheme for Algorithm 3.1.

W(k) =Wk —1) —y(k)Vw¥[W(k — 1)] (15)

by minimizing the cost function
Jung (W) = E[¥ (e (W)] = E| llewn (s W)||*| — min arg(w) (16)

Step 4. If k <N, go to Step 1. Otherwise, go to Step 5.

Step 5. Stop.

The scheme for Algorithm 3.1 is shown in Figure 5.

Comment 3.1. The sample gradient Vi ¥ [W(k — 1)] is evaluated as shown in
Section 2.3 with y(k)>0 (jointly with ¢;>0) satisfying two conditions (8) and (11)
ensuring a convergence of the algorithm (15) [20]. The sequence {c} of positive
scalar values participates in generating simultaneous perturbations to approximate
Vi [W(k — 1)].

Comment 3.2. The estimates for the system state in (2) are %, (k), which are
produced during running of Algorithm 3.1. To obtain the better estimates on the
basis of nonadaptive NNF, the NNF should be rerun subject to the weights resulting
from applying Algorithm 3.1.

Comment 3.3. If the number of observations is insufficient for well estimating the
NNF coefficients, it is possible to simulate a longer sequence of pseudo-observations

Zm (k) = Hxp (k) + vy (k)

where v,, (k) may be different from v(k) (but chosen as closely as possible to v (k)
in the statistical sense). The similar experiment will be carried out in this frame-
work for the ocean model MICOM in Section 6.

4. Adaptive NNF (NNAF)

To improve the performance of the NNF, the NNAF is developed in this section.
The NNAF is of the same structure as that of the NNF, but it is designed to
minimize the MPE of the system output. The NNAF is based on the second optimi-
zation procedure with the initial weights resulting from application of Algorithm 3.1.

For the design of the NNAF, the following objective function is introduced

Tonat (0)1=E| % (6 (W(O))] = E|||6, (ks W(O))|*| — minarg(o) — (17)
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The difference between two objective functions (16) and (17) is that if (16) is
expressed in terms of the (filtered) state estimation error, the error function (17)
measures the difference between the observation and the prediction of the system
output. As to the parameters to be adjusted, the following parameterizations are
possible to be used:

W) =W, +0 (18)
W(9) = oW, (19)
where W, is the estimate obtained from the learning procedure (Algorithm 3.1).
The initial value for 6 is (0) = 0 for the parameterization (18) and #(0) = 1 for
(19). It is mentioned that when the structure of the NNAF is closed to the AF in Ref.
[19], the parameterization (19) is more appropriate. We have now
Sl — 1) f'w <—1m 2),2(k — 1); W(0)]

More concretely, the NNAF is a result of the following.
Algorithm 4.1 (Adaptive procedure for improving NNF performance).

At the initial moment k = 1 suppose we are given %, (k/k — 1) and W;(i,j)

(W, (i,j) are obtained at the end of applying Algorithm 3.1). Suppose the set of
observations z(k),k = 1, ..., N is available.
Step 1. Pass the inputs X,,,(k/k — 1), z(k) through the NNF initialized by the

weights W(i,). The NNF produces in the output the estimate %,,, (k).
Step 2. Compute the error ¢(k) = z(k) — HX,, (k/k — 1) where.

Ko (ke Jle — 1) = Ok (ke — 1), 5% (k — 1) =f, [l — 1/k — 2),2(k — 1); W, (i,5)].
Step 3. Using the SPSA algorithm to update the weights
O(k) = 0(k —1) — y(k)Vop-1)¥[0(k — 1)] (21)

for seeking the optimal parameters 6 to minimize the cost function

Junf (6) =E ¥ (s, (ks W(6)))] = E|

g,m k W H ] — minargf (22)

Step 4. If k <N, go to Step 1. Otherwise, go to Step 5.
Step 5. Stop.

k)

(k17K = 7
n‘__ . |

x (k) Sk k=1)
a1 l ik /k=1) WJU\')

Suli etz )]
n

Figure 6.
Scheme for Algorithm 4.1.
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Figure 6 displays the scheme of Algorithm 4.1. Compared to Figure 3, here the
weights are assumed given (as resulting from application of Algorithm 3.1). States of
the numerical model are no longer participating in the SPSA algorithm; instead, the
innovation vector is involved in the optimization process.

5. Numerical experiments for systems of moderate dimensions
5.1 Experiment 1: One-dimensional system

We present in this section a very simple numerical experiment with an
one-dimensional system to illustrate clearly the idea on the NNAF.

Let us consider the system of Egs. (2)-(3) subjectto® = 0.99,H =1, Q =
0.09,R = 0.01. The experiment is carried out on the basis of a NNF, and the
performance of the NNF is compared with that of the KF and NNAF. The structure
of the NNF is shown in Figure 7.

Thus, the NNF has one hidden layer structure. The Linear and Sigmoid AcFs are
used in this NNF. The weights W,(i,/) are estimated by applying Algorithm 3.1. Here
the error e(k) = x(k) — x,, (k) is the difference the “wrong” model state governed by
Xm(k+1) = Ox,(k),k = 0,1, ..., N and the true system state governed by
x(k+1) = Ox(k) +w(k),k = 0,1, ...,N. The performance of the NNF is expressed
in the terms of root mean square (RMS) of the state prediction error.

Figure 8 shows the performances of three filters—NNF, NNF-FIX, and NNAF.
The red curve “NNF” is the RMS of state prediction error produced by the NNF
during the optimization process (Algorithm 3.1). The green curve “NFF-FIX” is
produced by the NNF with the fix weights obtained at the end of Algorithm 3.1. As
to the blue curve “NNAF,” it displays the performance of the NNAF by applying
Algorithm 4.1. The reason for which the NNAF has produced the best performance,
compared to the NNF and NNF-FIX, is that the NNAF minimizes the MPE for the
system outputs. It means that learning process does not extract all useful informa-
tion on the system state contained in the observations.

Time evolution of the weights, associated with connecting links between the
nodes in the hidden layer and the node of the output layer, is displayed in Figure 9.

Figure 10 shows the performances of four filters implemented for estimating the
system state of the 1d model: NAF (nonadaptive filter), AF developed in Ref. [18],
NNF (Algorithm 3.1), and NNAF (Algorithm 4.1). The NAF is the filter with the
constant gain computed on the basis of the stationary solution of the Riccati equa-
tion associated with the KF. One sees that the NNF behaves better than the NAF at
the beginning of the assimilation process. Application of adaptation allows to

Figure 7.
Structure of the NNF for the one-dimensional system.
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Figure 8.

RMSs of state prediction error vesulting from three filters: NNF (Algorithm 3.1, ved line), NNF-FIX (green
line), and NNAF (Algorithm 4.1, blue line). The ervor produced by the NNF during the optimization process
is too high compared to that of the NNF-FIX. It (NNF) reaches the same level (of NNF-FIX) at the end of the
assimilation period. As to the NNAF, the error vemains low duving all assimilation periods (after about the first
10 iterations).
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Figure 9.

Time evolution of several weights (between the nodes in the second (hidden) layer and the nodes in the output
layer) in the NNAF during the adaptation process: the weight of the connection link between the first node
(hidden layer) and the output node (ved curve); the weight of the connection link between the second node
(hidden layer) and the output node (green curve); and the weight of the connection link between the third node
(hidden layer) and the output node (red curve).

improve considerably the performances of the two nonadaptive NAF and NNF. In
general, two adaptive filters AF and NNAF are of the same performance.

5.2 Experiment 2: Chaotic Lorenz system
5.2.1 Lovenz equations
The Lorenz attractor is a chaotic map, noted for its butterfly shape. The map

shows how the state of a dynamical system evolves over time in a complex, non-
repeating pattern.

12



Neutral Network Adaptive Filter with Application to Ocean Curvent Energy Estimation
DOI: http://dx.doi.org/10.5772/intechopen.90148

Partormances In ms of Fane predicrion emor

Rus

Figure 10.

RMSs of state prediction error vesulting from four filters: NAF (nonadaptive filter, ved line), AF (green line),
NNF (blue line), and NNAF (pink line). The NNF, thanks to the learning process, behaves better than NAF.
The AF developed in Ref. [18] and NNAF (Algorithm 4.1) ave of the same performance.

The attractor itself and the equations from which it is derived were introduced
by Lorenz [22], who derived it from the simplified equations of convection rolls
arising in the equations of the atmosphere.

The equations that govern the Lorenz attractor are:

dy,/dt = _"()’1 _)’2)’
dy,/dt = py; —y, — yy3dy;/dt = .9, — Py, (23)

where o is called the Prandtl number, and p is called the Rayleigh number. All
o, f,p>0, and usually o = 10, # = 8/3, p are varied. The system exhibits chaotic
behavior for p = 28 but displays knotted periodic orbits for other values of p.

5.2.2 Numerical model

In the experiments, the parameters o, 3, p are chosen to have the values 10, 28,
and 8/3, respectively, for which the “butterfly” attractor exists.

The numerical model (NM) is obtained by applying the Euler method (first-
order accurate method) to approximate Eq. (23). Symbolically, we have the NM

V(1) = F[ ()], y(tes1) = [J’1(tk+1)>J’2(tk+1)’J’3(tk+1)}T (24)

where 0t ==t 1 — t;, is the model time step. The observations arrive at the assim-
ilation instants T, and AT}, :=Ty 1 — T.

5.2.3 Numerical model and observation

The numerical model is derived subject to &t := 0.005. The true states x(k),
produced by the NM corrupted by additive noise at the moment T, subject to
AT}, = 256t, are taken as observation z(k),k = 1, ..., N, contaminated with the noise
v, having zero mean and variance o7, with 6, = 0.1. The true dynamical system,
corresponding to the transition of the states between two assimilation instants T,
and T4, is expressed as

13
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x(k +1) = Flx(k)] +w(k) (25)

In Eq. (25), w(k) simulates the model error. The sequence {w(k)} is assumed to
be a white noise having diagonal covariance matrix with variances 2, 12.13, and
12.13, respectively. The observation system is given by

2(k +1) = Hx(k + 1) + (k) (26)

where the observation operator H = [th,hzT}T,hl = (1,0,0),k, = (0,0,1), that
is, the first and third components x4 (k), x3(k) are observed at each time instant k.
The noise sequence {v;} is white with zero mean and variance R = 2I,, where I, is
the unit matrix of dimension z. The initial estimate in all the filters is given by
%(0) = (5,10,27)".

The true model (TM) state x * (0) is modeled as the solution of Eq. (25) subject to
the initial state x* (0) = (1.509, 1.531,25.461) .

The problem in this experiment is to apply the NNF and its adaptive version to
estimate the true system state using the observations z(k), k =1, ..., N,, and to
compare their performances with those produced by the AF.

5.2.4 NNF structure and numerical results

The NNF used in this section has the following structure.

The NNF has only one hidden layer, and its AcFs are chosen as Linear and Step
AcFs (Figure 3). The structure in Figure 11 is chosen to be as simple as possible. It is
interesting to ask whether there are more complicated NNFs, which can yield a
better performance? However, in this chapter, we restrict our self to considering
only the NNF with the structure in Figure 11.

The weights in the NNF are first estimated (learning process) using the sequence
of the erroneous model (EM) states [which is a noise-free version of the TM (true
model) (25)]. The initial state in the EM is the same as that in the TM. Typical
evolution of weights during the learning process is shown in Figure 12. It is seen
that the weights’ estimates are relatively stable, though we cannot say they are
already stabilized due to an insufficient number of iterations. All the weights are
initialized with the values 0.5. We have also tested the NNF for the situation with

NN

Figure 11.
Structure of the NNF for the Lovenz data assimilation system.
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Figure 12.

Typical time evolution of NN weights (between the nodes in the second (hidden) layer and the node in the
output layer) in the NNAF duving the learning process: the weight of the connection link between the fourth
node (hidden layer) and the first node of the output layer (ved curve); the weight of the connection link between
the fourth node (hidden layer) and the second node of the output layer (green curve); and the weight of the
connection link between the fourth node (hidden layer) and the third node of the output layer (red curve). One
notes that the weights do not yet attend a stationary regime.

the initial weight values equal to 1. The results show that there is no significant
difference in filter performance between these two situations.

It is mentioned that the Lorenz system is very sensitive to the initial state
condition. Different initial states will lead to a variety of solution behavior: some
solutions are steady; others oscillate between two or more states; and still others
vary in an irregular manner.

We generate observations at 160 assimilation instants (4000 model time steps).
The different filters will be implemented to assimilate the observations.

Figure 13 shows the performance of three filters—NFF1, NNF2, and NNF3,

which are initialized with the same initial condition %(0) = (5,10,27)". It is seen

Pestom ances In mmis of Minered of ror
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Figure 13.

RMSs of state filtered ervor resulting from three filters: NNF1 (ved line)—the Lorenz model alone (without data
assimilation), which is running subject to the another initial state (5,10,27); NNF2 (green line)—the NNF
running with fix initial (connection link) weights (i.e., without learning process); and NNF3 (blue line)—the
NNF (applying Algorithm 3.1) with the initial weights in NNF2. One sees that the estimation error is too high
if no observations are assimilated into the model. If the observations are assimilated, with the learning process,
the ervor is decreasing as the learning process progresses and becomes lower than that in NNF2 at the end of the
learning process.
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Figure 14.

RMSs of state filtered error vesulting from three filters: NNF3 (ved line)—the same NNF3 in Figure 13
(Algorithm 3.1); NNF-FIX (green line)—the NNF subject to the fix coefficients obtained at the end of the
optimization process in NNF3; and NNAF (blue line)—the NNAF, which is obtained by tuning the weights in
NNF (initialized by the values obtained at the end of NNF3) to minimize the prediction ervor for the system
outputs (Algorithm 4.1) AF (pink line)—the AF (4) and (6) developed in Ref. [19].

that without data assimilation, the erroneous initial condition leads to big errors
between the true states and the states of the erroneous model (red curve, NNF1). By
simply initializing the weights in the NNF, it is possible to reduce an important
portion of the errors (green curve, NNF2). At the beginning of the learning process
(NNF3), the error is relatively high (even higher than that in NNF2), but it quickly
decreases after about 20 assimilation instants.

The SPSA algorithm is really capable of well searching optimal weights as seen
from comparison of performances of the two filters NNF3 and NNF4 (Figure 14).
Finally, tuning the weights in the NNF to minimize the prediction error (NNAF) of
the system output yields the best results (among all the filters of the neural network
structure) as seen from the curve “NNAF” (Algorithm 4.1). To verify the optimality
of the NNAF, we have also implemented the AF (4) and (5) based on tuning the
parameters of the filter gain [19]. The performance of the AF is shown by the pink
curve “AF” in Figure 14, which is almost the same as that of the NNAF. As before,
all the filters are starting from the same initial condition as used in the NNF1. It is
interesting to note that the two adaptive filters NNAF and AF are of different
structures, but they can yield the same performance. If for the NNAF, the choice of
the NN structure (sets of inputs, outputs; number of layers, initial values of the
weights to be selected, and learning process) is most important, in the AF the
question about the choice of stabilizing gain with appropriate parameterization is
primordial for the success of the AF.

6. Numerical experiment for high dimensional ocean model MICOM
The oceans represent a vast source of renewable energy. In general, ocean

energy can be divided into six types of different origin and characteristics: ocean
wave, tidal range, tidal current, ocean current, thermal energy, and salinity
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gradient. Knowledge of these quantities is important for decision making on sizing,
placement, and optimization of installation of system energy.

These oceanic quantities are now can be well modeled through an ocean numer-
ical model, which is constructed according to the ocean configuration of interest.
The difficulties arising here are that the model solution gives us only the relative
values of quantities of interest because the model is always far from the reality.
Therefore, in order to more accurately assess the true values of oceanic quantities,
the measurement data are required to be inserted into the model to correct the
model solution. The role of DA algorithms is just to properly (in some sense, in the
best way) insert data into a numerical model so that to ensure a stability of the
algorithm and to minimize the estimation error.

In this section, the experiment with the ocean model MICOM is carried out,
which is aimed at estimating the ocean current in different depths (vertical layers).

6.1 Numerical model

The ocean model used for the DA experiment with the NNF and NNAF is the
MICOM (Miami Isopycnic Coordinate Ocean Model), which is identical to that
described in Ref. [18]. The model configuration is a domain situated in the North
Atlantic from 30°N to 60°N and 80°W to 44°; for the exact model domain and some
main features of the ocean current produced by the model, see Ref. [19].

The MICOM used here has the state x = (h, u,v), where h = h(i,j, k) is a layer
thickness, and # = u(i,j, k) and v = v(i, ], k) are two velocity components. In the
model,i =1, ...,140;j =1, ..., 180; and N, = 4 vertical layers, resulting in the state
vector of dimension 302,400. The model is integrated from the state of rest during
20 years (ys). During the period of 2 years 19 and 20, every 10 days, the sea surface
height (SSH) is computed as a linear function of the layer thickness 4, which is
considered as observation in assimilation experiments (totally 72 observations are
available). To be closer to realistic situations with satellite observations, available
only at along-track grid points, we assume that the observations are noise-free sea
surface height (SSH), available only at the set S,of horizontal grid points S, =
{(,j),i =1,11, ...,131,j = 1,11, ..., 171} (but not at all horizontal grid points).

6.2 Structure of NNF

We first construct a NNF block for estimating the layer thickness variable /
using the SSH observations. The Linear and Step AcFs are used in the NNF. The two
velocity components (#,v)are computed using the geostrophy hypothesis. The
scheme of the NNF is shown in Figure 15.
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Figure 15.
Scheme for NNF for data assimilation in MICOM.
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It is mentioned that as the observations are available only at the set S,, one sub-
NN block (with sigmoid AcF), named “optimal interpolation,” is designed to inter-
polate the observations (i.e., to estimate the values of observations), available at S,,
on all the horizontal grid points of the surface. This operation is very important to
ensure smooth corrections to all layer thicknesses and to estimate all layer velocities.

The NNF has one hidden layer as that used in the Lorenz experiment. One note
from Figure 15 that in the MICOM experiment, the Algorithm 3.1 has been
implemented not on the basis of the true observations z(k) in Eq. (3) but using the
other set of “observations” (calculated from x,,(k), see Figure 15) for estimating the
weights in the NNF (see Comment 3.3). To test the influence of “true samples” and
“erroneous samples” on the NNF performance, we have implemented two learning
procedures, one is based on the set of erroneous samples x,,xx,, and another on
the basis of true samples x,,ocx ™.

6.3 Numerical results

In Figure 16, we show the evolution of some NNF weights during the learning
process on the basis of the set of erroneous samples.
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Figure 16.
Typical evolution of estimated weights in different layers during learning process. Initial weights are taken from
application of the Cooper and Haines’s water column lifting—lowering method [19].
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Figure 17.

Variances of prediction error for the velocity (v component) at the fivst layer by NNFT (ved curve) and NNFE
(green curve).
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Figure 18.
Performance of different filters (in variance) of SSH prediction error (objective function).

The weights, obtained at the end of learning process, are inserted into two NNFs
—NNFT and NNFE, where the weights in the NNFT are obtained by minimizing
the difference between the NNF state and the true system state, and NNFE—with
the weights resulting from minimizing the difference between the NNF state and
the state of the erroneous model. Figure 17 displays the variances of the prediction
error for velocity (v component) at the first layer produced by NNFT (red curve)
and NNFE (green curve). One sees that learning on the basis of samples of the true
state yields more optimal weights, especially in avoiding the error pick, but gener-
ally speaking, only a slight improvement is observed.

We have tested different filters to see the effect of optimization in finding the
weights in the NNF and those in the NNAF. The performances of these filters are
shown in Figure 18. From Figure 18, the error in the NNFO on the basis of the
initialized weights (red curve) is too high compared to those of the other filters. The
improvement is observed for the NNF (Algorithm 3.1) during the optimization
process (green curve). If we run the NNF — FIX with the fix weights, resulting at
the end of the optimization process in the NNF, a much better performance has been
produced (blue curve). Finally, the best results are obtained by running the NNAF
(Algorithm 4.1) (pink curve).

Tisma arvarage AMS of Blnarad arres ivabecity

u-:nmpn nt. Lok Taper ——
Elayer

raMPunent?nﬂ |y ——
w-cemponent, Lat |ayer 1

ll
o Loy
e CooorprneF O e ey Lok

4 f S S v

L L i 5 i L I
] I 20 £L an 1) (1 L ED
asgimilamian Instants

Figure 19.
Spatial temporal average RMS of velocity at first two layers for u and v component (by NNF).
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Figure 20.
Spatial temporal average RMS of u velocity at surface produced by NNF, NNF-FIX, and NNAF.

To have a more complete idea on how work the NNF and NNAF in high
dimensional setting, in Figure 19, we show the spatial temporal average RMS of
velocity (u,v) at the first two layers. As expected, estimating the velocity at the
surface is more difficult than in deeper layers. One remark is that the u-velocity
component is easier to estimate (i.e. with less error) than the » component.
Figure 20 gives a picture on performance of different filters. It displays the error
(for u velocity at the surface) produced by three filters: NNFO, NNF — FIX, and
NNAF. If in Figure 18, the difference (in SSH forecast error) between NNF — FIX
and NNAF is less visible for the velocity variable, and the superiority of theNNAF
over the NNF — FIX is remarkable. This tendency is observed in the comparison of
velocity estimation errors produced by the three mentioned filters, at different
layers as well as for the v-velocity component.

7. Conclusions

In this chapter, a constructive algorithm offering an attractive approach for the
design of a NNAF is proposed. In particular, a simple NN structure with one hidden
layer has proved to be efficient: it can yield a high performance of all the NNAFs
implemented in the experiments—either with moderate or with high dimensional
systems. The superiority (in performance) of the NNAF is confirmed even for the
Lorenz system with chaotic character, which is very popular due to its high sensi-
tivity to the initial condition. It would emphasize here that in the NNF and NNAF,
no initial condition is used as a control variable to formulate the optimization
problems. The experiment with the HdS ocean model MICOM demonstrates a
possibility to exploit the NNF for state estimation problems for realistic HdSs.

It is found from the experiments that an appropriate choice of initial values for
the weights is important for yielding a high performance of the NNF, with a
moderate number of hidden layers and iteration steps. In the MICOM experiment,
we have initialized the weights with the values corresponding to the lifting-
lowering water column method. A more efficient way to initialize the weights (to
achieve a better performance) is to follow the method described in Ref. [23] based
on computing the dominant Schur vectors of the system dynamics. It is highly
probable that the NNF with a larger number of hidden layers and nodes could
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produce a better performance. The question on how many numbers of layers and
nodes to be chosen for the NNAF is open and is left for the future study.

The experimental results confirm that including adaptation as a mechanism for
minimizing the MPE of the system outputs is an efficient way to improve the NNF
performance.

We want to stress that the success of the NNAF is possible partly due to appli-
cation of SPSA optimization algorithms. These algorithms are relatively ease of use
for solving difficult multivariate optimization problems and are simple to imple-
ment and possess a good convergence rate. They require only two objective func-
tion measurements per iteration regardless of the dimension of the optimization
problem. These features make SPSA as a powerful tool for solving optimization
problems with nonlinearities and high dimensionality of complex dynamical
systems.

Finally, as the developed NNAF in this chapter is very effective and easy to
implement, which makes it quite applicable for solving different real-world tasks, in
particular for solving DA problems in more sophisticated ocean models like the
HYCOM (HYdrodynamic Coordinates Ocean Modeling). With the HYCOM model,
it is possible to estimate, for example, thermal energy and salinity gradients—the
quantities, serving important sources of renewable energy to generate electricity for
global electrical demand in future. It is mentioned that the model HYCOM is used
by the French Navy Hydrographic and Oceanographic Service (SHOM) for the
prediction of ocean currents, to predict variations on the climatic scale, with a
model of waves and a metric resolution, with very short-lived physics at the littoral
scale. Implementation of the NNAF represents real challenges for the future opera-
tional forecasting systems [24].
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