36 research outputs found

    Active SLAM using model predictive control and attractor based exploration

    Full text link
    Active SLAM poses the challenge for an autonomous robot to plan efficient paths simultaneous to the SLAM process. The uncertainties of the robot, map and sensor measurements, and the dynamic and motion constraints need to be considered in the planning process. In this paper, the active SLAM problem is formulated as an optimal trajectory planning problem. A novel technique is introduced that utilises an attractor combined with local planning strategies such as Model Predictive Control (a.k.a. Receding Horizon) to solve this problem. An attractor provides high level task intentions and incorporates global information about the environment for the local planner, thereby eliminating the need for costly global planning with longer horizons. It is demonstrated that trajectory planning with an attractor results in improved performance over systems that have local planning alone. 漏 2006 IEEE

    Planning under uncertainty using model predictive control for information gathering

    Full text link
    This paper considers trajectory planning problems for autonomous robots in information gathering tasks. The objective of the planning is to maximize the information gathered within a finite time horizon. It is assumed that either the Extended Kalman Filter (EKF) or the Extended Information Filter (EIF) is applied to estimate the features of interest and the information gathered is expressed by the covariance matrix or information matrix. It is shown that the planning process can be formulated as an optimal control problem for a nonlinear control system with a gradually identified model. This naturally leads to the Model Predictive Control (MPC) planning strategy, which uses the updated knowledge about the model to solve a finite horizon optimal control problem at each time step and only executes the first control action. The proposed MPC framework is demonstrated through solutions to two challenging information gathering tasks: (1) Simultaneous planning, localization, and map building (SPLAM) and (2) Multi-robot Geolocation. It is shown that MPC can effectively deal with dynamic constraints, multiple robots/features and a range of objective functions. 漏 2006 Elsevier Ltd. All rights reserved

    On the Uncertainty in Active SLAM: Representation, Propagation and Monotonicity

    Get PDF
    La localizaci贸n y mapeo simult谩neo activo (SLAM activo) ha recibido mucha atenci贸n por parte de la comunidad de rob贸tica por su relevancia en aplicaciones de robot m贸viles. El objetivo de un algoritmo de SLAM activo es planificar la trayectoria del robot para maximizar el 谩rea explorada y minimizar la incertidumbre asociada con la estimaci贸n de la posici贸n del robot. Durante la fase de exploraci贸n de un algoritmo de SLAM, donde el robot navega en una regi贸n previamente desconocida, la incertidumbre asociada con la localizaci贸n del robot crece sin l铆mites. Solo despu茅s de volver a visitar regiones previamente conocidas, se espera una reducci贸n en la incertidumbre asociada con la localizaci贸n del robot mediante la detecci贸n de cierres de bucle. Esta tesis doctoral se centra en la importancia de representar y cuantificar la incertidumbre para calcular correctamente la confianza asociada con la estimaci贸n de la localizaci贸n del robot en cada paso de tiempo a lo largo de su recorrido y, por lo tanto, decidir la trayectoria correcta de acuerdo con el objetivo de SLAM activo.En la literatura, se han propuesto fundamentalemente dos tipos de modelos de representaci贸n de la incertidumbre: absoluta y diferencial. En representaci贸n absoluta, la informaci贸n sobre la incertidumbre asociada con la localizaci贸n del robot est谩 representada por una funci贸n de distribuci贸n de probabilidad, generalmente gausiana, sobre las variables de localizaci贸n absoluta con respecto a una referencia base elegida. La estimaci贸n de la posici贸n del robot est谩 dada por la esperanza de las variables asociadas con la localizaci贸n y la incertidumbre por su matriz de covarianza asociada. La representaci贸n diferencial utiliza una representaci贸n local de la incertidumbre, la posici贸n estimada del robot se representa mediante la mejor aproximaci贸n de la posici贸n absoluta y el error de estimaci贸n se representa localmente mediante un vector diferencial. Este vector generalmente tambi茅n est谩 representado por una funci贸n de distribuci贸n de probabilidad gausiana. Representaciones equivalentes al modelo diferencial han utilizado las herramientas de Grupos de Lie y 脕lgebras de Lie para representar la incertidumbre. Adem谩s de estos modelos, existen diferentes formas de representar la posici贸n y orientaci贸n de la posici贸n del robot, 谩ngulos de Euler, cuaterniones y transformaciones homog茅neas.Los enfoques m谩s comunes para cuantificar la incertidumbre en SLAM se basan en criterios de optimalidad con el objetivo de cuantificar el mapa y la incertidumbre de la posici贸n del robot: A-opt (traza de la matriz de covarianza, o suma de sus autovalores), D-opt (determinante de la matriz de covarianza, o producto de sus autovalores) y E-opt (criterio del mayor autovalor). Alternativamente, otros algoritmos de SLAM activo, basados en la Teor铆a de la Informaci贸n, se basan en el uso de la entrop铆a de Shannon para seleccionar acciones que lleven al robot al objetivo seleccionado. En un escenario de SLAM activo, garantizar la monotonicidad de estos criterios en la toma de decisiones durante la exploraci贸n, es decir, cuantificar correctamente que la incertidumbre encapsulada en una matriz de covarianza est谩 aumentando, es un paso esencial para tomar decisiones correctas. Como ya se ha mencionado, durante la fase de exploraci贸n la incertidumbre asociada con la localizaci贸n del robot aumenta. Por lo tanto, si no se preserva la monotonicidad de los criterios considerados, el sistema puede seleccionar trayectorias o caminos que creen falsamente que conducen a una menor incertidumbre de la localizaci贸n del robot.En esta tesis, revisamos el trabajo relacionado sobre representaci贸n y propagaci贸n de la incertidumbre de la posici贸n del robot en los diferentes modelos propuestos en la literatura. Adem谩s, se lleva a cabo un an谩lisis de la incertidumbre representada localmente con un vector diferencial y la incertidumbre representada usando grupos de Lie. Investigamos la monotonicidad de diferentes criterios para la toma de decisiones, tanto en 2D como en 3D, dependiendo de la representaci贸n de la incertidumbre y de la representaci贸n de la orientaci贸n del robot. Nuestra conclusi贸n fundamental es que la representaci贸n de la incertidumbre sobre grupos de Lie y usando un vector diferencial son similares e independientes de la representaci贸n utilizada para la parte rotacional de la posici贸n del robot. Esto se debe a que la incertidumbre se representa localmente en el espacio de las transformaciones diferenciales que se corresponde con el 谩lgebra de Lie del grupo euclidiano especial SE(n). Sin embargo, en el espacio tridimensional, la estimaci贸n de la localizaci贸n del robot depende de las diferentes formas de representaci贸n de la parte rotacional. Por lo tanto, una forma adecuada de manipular conjuntamente la estimaci贸n y la incertidumbre del robot es utilizando la teor铆a de grupos de Lie debido a que es una representaci贸n que garantiza propiedades tales como una representaci贸n m铆nima y libre de singularidades en los 谩ngulos de rotaci贸n. Anal铆ticamente, demostramos que, utilizando representaciones diferenciales para la propagaci贸n de la incertidumbre, la monotonicidad se conserva para todos los criterios de optimalidad, A-opt, D-opt y E-opt y para la entrop铆a de Shannon. Tambi茅n demostramos que la monotonicidad no se cumple para ninguno de ellos en representaciones absolutas usando 谩ngulos Roll-Pitch-Yaw y Euler. Finalmente, mostramos que al usar cuaterniones unitarios en representaciones absolutas, los 煤nicos criterios que preservan la monotonicidad son D-opt y la entrop铆a de Shannon.Estos hallazgos pueden guiar a los investigadores de SLAM activo a seleccionar adecuadamente un modelo de representaci贸n de la incertidumbre, de modo que la planificaci贸n de trayectorias y los algoritmos de exploraci贸n puedan evaluar correctamente la evoluci贸n de la incertidumbre asociada a la posici贸n del robot.Active Simultaneous Localization and Mapping (Active SLAM) has received a lot of attention from the robotics community for its relevance in mobile robotics applications. The objective of an active SLAM algorithm is to plan ahead the robot motion in order to maximize the area explored and minimize the uncertainty associated with the estimation, all within a time and computation budget. During the exploration phase of a SLAM algorithm, where the robot navigates in a previously unknown region, the uncertainty associated with the robot's localization grows unbounded. Only after revisiting previously known regions a reduction in the robot's localization uncertainty is expected by detecting loop-closures. This doctoral thesis focuses on the paramount importance of representing and quantifying uncertainty to correctly report the associated confidence of the robot's location estimate at each time step along its trajectory and therefore deciding the correct course of action in an active SLAM mission. Two fundamental types of models of probabilistic representation of the uncertainty have been proposed in the literature: absolute and dfferential. In absolute representations, the information about the uncertainty in the location of the robot's pose is represented by a probability distribution function, usually Gaussian, over the variables of the absolute location with respect to a chosen base reference. The estimated location is given by the expected location variables and the uncertainty by its associated covariance matrix. Differential representations use a local representation of the uncertainty, the estimated location of the robot is represented by the best approximation of the absolute location and the estimation error is represented locally by a differential location vector. This vector is usually also represented by a Gaussian probability distribution function. Equivalent representations to differential models have used the tools of Lie groups and Lie algebras to represent uncertainties. In addition to uncertainty models, there are different ways to represent the position and orientation of the robot's pose, Euler angles, quaternions and homogeneous transformations. The most common approaches to quantifying uncertainty in SLAM are based on optimality criteria which aim at quantifying the map and robot's pose uncertainty, namely A-opt (trace of the covariance matrix, or sum of its eigenvalues), D-opt (determinant of the covariance matrix, or product of its eigenvalues) and E-opt (largest eigenvalue) criteria. Alternatively, other active SLAM algorithms, based on Information Theory, rely on the use of the Shannon's entropy to select courses of action for the robot to reach the commanded goal location. In an active SLAM scenario, guaranteeing monotonicity of these decision making criteria during exploration, i.e. quantifying correctly that the uncertainty encapsulated in a covariance matrix is increasing, is an essential step towards making correct decisions. As already mentioned, during exploration the uncertainty associated with the robot's localization increases. Therefore, if monotonicity of the criteria considered is not preserved, the system might select courses of action or paths that it falsely believes lead to less uncertainty in the robot. In this thesis, we review related work about representation and propagation of the uncertainty of robot's pose and present a survey of different types of models proposed in the literature. Additionally, an analysis of the uncertainty represented with a differential uncertainty vector and the uncertainty represented on Lie groups is carried out. We investigate the monotonicity of different decision making criteria, both in 2D and 3D, depending on the representation of uncertainty and the orientation of the robot's pose. Our fundamental conclusion is that uncertainty representation over Lie groups and using differential location vectors are similar and independent of the representation used for rotational part of the robot's pose. This is due to the uncertainty is represented locally in the space of differential transformations for translation and rotation that correspond with the Lie algebra of special Euclidean group SE(n). However, in 3-dimensional space, the homogeneous transformation associated to the approximation of the real location depend on the different ways of representation the rotational part. Therefore, a proper way to jointly manipulating the estimation and uncertainty of the pose is to use the theory of Lie groups due to it is a representation to guarantee properties such as a minimal representation and free of singularities in rotation angles. We analytically show that, using differential representations to propagate spatial uncertainties, monotonicity is preserved for all optimality criteria, A-opt, D-opt and E-opt and for Shannon's entropy. We also show that monotonicity does not hold for any of them in absolute representations using Roll-Pitch-Yaw and Euler angles. Finally, we show that using unit quaternions in absolute representations, the only criteria that preserve monotonicity are D-opt and Shannon's entropy. These findings can guide active SLAM researchers to adequately select a representation model for uncertainty, so that path planning and exploration algorithms can correctly assess the evolution of location uncertainty.<br /

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here

    Accelerated neuromorphic cybernetics

    Get PDF
    Accelerated mixed-signal neuromorphic hardware refers to electronic systems that emulate electrophysiological aspects of biological nervous systems in analog voltages and currents in an accelerated manner. While the functional spectrum of these systems already includes many observed neuronal capabilities, such as learning or classification, some areas remain largely unexplored. In particular, this concerns cybernetic scenarios in which nervous systems engage in closed interaction with their bodies and environments. Since the control of behavior and movement in animals is both the purpose and the cause of the development of nervous systems, such processes are, however, of essential importance in nature. Besides the design of neuromorphic circuit- and system components, the main focus of this work is therefore the construction and analysis of accelerated neuromorphic agents that are integrated into cybernetic chains of action. These agents are, on the one hand, an accelerated mechanical robot, on the other hand, an accelerated virtual insect. In both cases, the sensory organs and actuators of their artificial bodies are derived from the neurophysiology of the biological prototypes and are reproduced as faithfully as possible. In addition, each of the two biomimetic organisms is subjected to evolutionary optimization, which illustrates the advantages of accelerated neuromorphic nervous systems through significant time savings

    Proceedings of the Fifth NASA/NSF/DOD Workshop on Aerospace Computational Control

    Get PDF
    The Fifth Annual Workshop on Aerospace Computational Control was one in a series of workshops sponsored by NASA, NSF, and the DOD. The purpose of these workshops is to address computational issues in the analysis, design, and testing of flexible multibody control systems for aerospace applications. The intention in holding these workshops is to bring together users, researchers, and developers of computational tools in aerospace systems (spacecraft, space robotics, aerospace transportation vehicles, etc.) for the purpose of exchanging ideas on the state of the art in computational tools and techniques
    corecore