228 research outputs found

    Modeling Thermal Turbulence Using Implicit Large Eddy Simulation

    Get PDF
    A general description of a thermally coupled fluid flow is given by the incompressible Navier-Stokes equations coupled with the heat equation using Boussinesq approximation, whose mathematical structure is much well understood. A variational multiscale finite element approximation has been considered for the formulation of incompressible Navier-Stokes equation and heat equation. The complexity of these problems makes their numerical solution very difficult as the standard finite element method is unstable. In the incompressible Navier Stokes equations, two well known sources of numerical instabilities are the incompressibility constraint and the presence of the convective term. Many stabilization techniques used nowadays are based on scale separation, splitting the unknown into a coarse part induced by the discretization of the domain and a fine subgrid part. The modeling of the subgrid scale and its influence leads to a modified coarse scale problem providing stability. In convection-diffusion problem once global instabilities have been overcome by a stabilization method, there are still local oscillations near layers due to the lack of monotonicity of the method. Shock capturing techniques are often employed to deal with them. Proper choice of stabilization and shock capturing techniques can eliminate the local instabilities near layers of convection-diffusion equation. A very important issue of the formulation presented in this thermally coupled incompressible flow is the possibility to model turbulent flows. Some terms involving the velocity subgrid scale arise from the convective term in the Navier-Stokes equations which can be understood as the contribution from the Reynolds tensor of a LES approach and the contribution from the cross stress tensor. This opens the door of modeling thermal turbulence using LES automatically inherited by the formulation used in this work. Different classical benchmark problems are numerically solved in this thesis work for the convection-diffusion equation to show the capabilities of different combination of stabilization and shock capturing methods. In the case of thermally coupled incompressible flows some numerical and industrial examples are exhibited to check the performance of the different combination of stabilization and shock capturing methods and to compare them. The objective is to conclude which method works better to approximate the exact solution and eliminate instabilities and local oscillations

    Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows

    Get PDF
    In this work we study the performance of some variational multiscale models (VMS) in the large eddy simulation (LES) of turbulent flows. We consider VMS models obtained by different subgrid scale approximations which include either static or dynamic subscales, linear or nonlinear multiscale splitting, and different choices of the subscale space. After a brief review of these models, we discuss some implementation aspects particularly relevant to the simulation of turbulent flows, namely the use of a skew symmetric form of the convective term and the computation of projections when orthogonal subscales are used. We analyze the energy conservation (and numerical dissipation) of the alternative VMS formulations, which is numerically evaluated. In the numerical study, we have considered three well known problems: the decay of homogeneous isotropic turbulence, the Taylor–Green vortex problem and the turbulent flow in a channel. We compare the results obtained using different VMS models, paying special attention to the effect of using orthogonal subscale spaces. The VMS results are also compared against classical LES scheme based on filtering and the dynamic Smagorinsky closure. Altogether, our results show the tremendous potential of VMS for the numerical simulation of turbulence. Further, we study the sensitivity of VMS to the algorithmic constants and analyze the behavior in the small time step limit. We have also carried out a computational cost comparison of the different formulations. Out of these experiments, we can state that the numerical results obtained with the different VMS formulations (as far as they converge) are quite similar. However, some choices are prone to instabilities and the results obtained in terms of computational cost are certainly different. The dynamic orthogonal subscales model turns out to be best in terms of efficiency and robustness

    Dynamic term-by-term stabilized finite element formulation using orthogonal subgrid-scales for the incompressible Navier–Stokes problem

    Get PDF
    In this paper, we propose and analyze the stability and the dissipative structure of a new dynamic term-by-term stabilized finite element formulation for the Navier–Stokes problem that can be viewed as a variational multiscale (VMS) method under some assumptions. The essential point of the formulation is the time dependent nature of the subscales and, contrary to residual-based formulations, the introduction of two velocity subscale components. They represent the components of the convective and the pressure gradient terms, respectively, of the momentum equation that cannot be captured by the finite element mesh. A key idea of the proposed method is that the convective subscale is close to a solenoidal field and the pressure gradient subscale is close to a potential field. The method ensures stability in anisotropic space–time discretizations, which is proved using numerical analysis for a linearized problem and demonstrated in classical numerical tests. The work includes a detailed description of the proposed formulation and several numerical examples that serve to justify our claims.Peer ReviewedPostprint (author's final draft

    LES Turbulence models. Relation with stabilized numerical methods

    Get PDF
    One of the aims of this text is to show some important results in LES modelling and to identify which are main mathematical problems for the development of a complete theory. A relevant aspect of LES theory, which we will consider in our work, is the close relationship between the mathematical properties of LES models and the numerical methods used for their implementation. In last years it is more and more common the idea in the scientific community, especially in the numerical community, that turbulence models and stabilization techniques play a very similar role. Methodologies used to simulate turbulent flows, RANS or LES approaches, are based on the same concept: unability to simulate a turbulent flow using a finite discretization in time and space. Turbulence models introduce additional information (impossible to be captured by the approximation technique used in the simulation) to obtain physically coherent solutions. On the other side, numerical methods used for the integration of partial differential equations (PDE) need to be modified in order to able to reproduce solutions that present very high localized gradients. These modifications, known as stabilization techniques, make possible to capture these sharp and localized changes of the solution. According with previous paragraphs, the following natural question appears: Is it possible to reinterpret stabilization methods as turbulence models? This question suggests a possible principle of duality between turbulence modelling and numerical stabilization. More than to share certain properties, actually, it is suggested that the numerical stabilization can be understood as turbulence. The opposite will occur if turbulence models are only necessary due to discretization limitations instead of a need for reproducing the physical behaviour of the flow. Finally: can turbulence models be understood as a component of a general stabilization method

    LES turbulence Models: relation with stabilized numerical methods

    Get PDF
    Abstract One of the aims of this text is to show some important results in LES modelling and to identify which are main mathematical problems for the development of a complete theory. A relevant aspect of LES theory, which we will consider in our work, is the close relationship between the mathematical properties of LES models and the numerical methods used for their implementation. In last years it is more and more common the idea in the scientific community, especially in the numerical community, that turbulence models and stabilization techniques play a very similar role. Methodologies used to simulate turbulent flows, RANS or LES approaches, are based on the same concept: unability to simulate a turbulent flow using a finite discretization in time and space. Turbulence models introduce additional information (impossible to be captured by the approximation technique used in the simulation) to obtain physically coherent solutions. On the other side, numerical methods used for the integration of partial differential equations (PDE) need to be modified in order to able to reproduce solutions that present very high localized gradients. These modifications, known as stabilization techniques, make possible to capture these sharp and localized changes of the solution. According with previous paragraphs, the following natural question appears: Is it possible to reinterpret stabilization methods as turbulence models? This question suggests a possible principle of duality between turbulence modelling and numerical stabilization. More than to share certain properties, actually, it is suggested that the numerical stabilization can be understood as turbulence. The opposite will occur if turbulence models are only necessary due to discretization limitations instead of a need for reproducing the physical behaviour of the flow. Finally: can turbulence models be understood as a component of a general stabilization method?Preprin

    LES turbulence models. Relation with stabilized numerical methods

    Get PDF
    One of the aims of this text is to show some important results in LES modelling and to identify which are main mathematical problems for the development of a complete theory. A relevant aspect of LES theory, which we will consider in our work, is the close relationship between the mathematical properties of LES models and the numerical methods used for their implementation. In last years it is more and more common the idea in the scientific community, especially in the numerical community, that turbulence models and stabilization techniques play a very similar role. Methodologies used to simulate turbulent flows, RANS or LES approaches, are based on the same concept: unability to simulate a turbulent flow using a finite discretization in time and space. Turbulence models introduce additional information (impossible to be captured by the approximation technique used in the simulation) to obtain physically coherent solutions. On the other side, numerical methods used for the integration of partial differential equations (PDE) need to be modified in order to able to reproduce solutions that present very high localized gradients. These modifications, known as stabilization techniques, make possible to capture these sharp and localized changes of the solution. According with previous paragraphs, the following natural question appears: Is it possible to reinterpret stabilization methods as turbulence models? This question suggests a possible principle of duality between turbulence modelling and numerical stabilization. More than to share certain properties, actually, it is suggested that the numerical stabilization can be understood as turbulence. The opposite will occur if turbulence models are only necessary due to discretization limitations instead of a need for reproducing the physical behaviour of the flow. Finally: can turbulence models be understood as a component of a general stabilization method
    • …
    corecore