57,614 research outputs found

    Consistent local projection stabilized finite element methods

    Get PDF
    This work establishes a formal derivation of local projection stabilized methods as a result of an enriched Petrov-Galerkin strategy for the Stokes problem. Both velocity and pressure finite element spaces are enhanced with solutions of residual-based local problems, and then the static condensation procedure is applied to derive new methods. The approach keeps degrees of freedom unchanged while gives rise to new stable and consistent methods for continuous and discontinuous approximation spaces for the pressure. The resulting methods do not need the use of a macro-element grid structure and are parameter-free. The numerical analysis is carried out showing optimal convergence in natural norms, and moreover, two ways of rendering the velocity field locally mass conservative are proposed. Some numerics validate the theoretical results

    A new design method for industrial portal frames in fire

    Get PDF
    For single-storey steel portal frames in fire, especially when they are situated close to a site perimeter, it is imperative that the boundary walls stay close to vertical, so that fires which occur are not allowed to spread to adjacent properties. A current UK fire design guide requires either that the whole frame be protected as a single element, or that the rafter may be left unprotected if column bases and foundations are designed to resist the forces and moments generated by rafter collapse, in order to ensure the lateral stability of the boundary walls. This can lead to very uneconomical foundation design and base-plate detailing. In previous studies carried out at the University of Sheffield it was found that a fundamental aspect of the collapse of a portal frame rafter is that it usually loses stability in a ā€œsnap-throughā€ mechanism, but is capable of re-stabilising at high deflections, when the roof has inverted but the columns remain close to vertical. Numerical tests performed using the new model show that the strong base connections recommended by the current design method do not always lead to a conservative design. It is also found that initial collapse of the rafter is always caused by a plastic hinge mechanism based on the frameā€™s initial configuration. If the frame can then re-stabilize when the roof is substantially inverted, a second mechanism relying on the re-stabilized configuration can lead to failure of the whole frame. In this paper, a portal frame with different bases is simulated numerically using Vulcan, investigating the effect of different base strength on the collapse behaviour. The test results are compared with the failure mode assumed by the current design method. A new method for the estimation of re-stabilized positions of single-span frames in fire, using the second failure mechanism, is discussed and calibrated against the numerical test results

    Evaluating the Impact of Treating the Optimal Subgroup

    Get PDF
    Suppose we have a binary treatment used to influence an outcome. Given data from an observational or controlled study, we wish to determine whether or not there exists some subset of observed covariates in which the treatment is more effective than the standard practice of no treatment. Furthermore, we wish to quantify the improvement in population mean outcome that will be seen if this subgroup receives treatment and the rest of the population remains untreated. We show that this problem is surprisingly challenging given how often it is an (at least implicit) study objective. Blindly applying standard techniques fails to yield any apparent asymptotic results, while using existing techniques to confront the non-regularity does not necessarily help at distributions where there is no treatment effect. Here we describe an approach to estimate the impact of treating the subgroup which benefits from treatment that is valid in a nonparametric model and is able to deal with the case where there is no treatment effect. The approach is a slight modification of an approach that recently appeared in the individualized medicine literature

    Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric analysis. II: The incompressible Navier-Stokes equations

    Full text link
    This paper presents the construction of a correct-energy stabilized finite element method for the incompressible Navier-Stokes equations. The framework of the methodology and the correct-energy concept have been developed in the convective--diffusive context in the preceding paper [M.F.P. ten Eikelder, I. Akkerman, Correct energy evolution of stabilized formulations: The relation between VMS, SUPG and GLS via dynamic orthogonal small-scales and isogeometric analysis. I: The convective--diffusive context, Comput. Methods Appl. Mech. Engrg. 331 (2018) 259--280]. The current work extends ideas of the preceding paper to build a stabilized method within the variational multiscale (VMS) setting which displays correct-energy behavior. Similar to the convection--diffusion case, a key ingredient is the proper dynamic and orthogonal behavior of the small-scales. This is demanded for correct energy behavior and links the VMS framework to the streamline-upwind Petrov-Galerkin (SUPG) and the Galerkin/least-squares method (GLS). The presented method is a Galerkin/least-squares formulation with dynamic divergence-free small-scales (GLSDD). It is locally mass-conservative for both the large- and small-scales separately. In addition, it locally conserves linear and angular momentum. The computations require and employ NURBS-based isogeometric analysis for the spatial discretization. The resulting formulation numerically shows improved energy behavior for turbulent flows comparing with the original VMS method.Comment: Update to postprint versio

    A two-level enriched finite element method for a mixed problem

    Get PDF
    The simplest pair of spaces is made inf-sup stable for the mixed form of the Darcy equation. The key ingredient is to enhance the finite element spaces inside a Petrov-Galerkin framework with functions satisfying element-wise local Darcy problems with right hand sides depending on the residuals over elements and edges. The enriched method is symmetric, locally mass conservative and keeps the degrees of freedom of the original interpolation spaces. First, we assume local enrichments exactly computed and we prove uniqueness and optimal error estimates in natural norms. Then, a low cost two-level finite element method is proposed to effectively obtain enhancing basis functions. The approach lays on a two-scale numerical analysis and shows that well-posedness and optimality is kept, despite the second level numerical approximation. Several numerical experiments validate the theoretical results and compares (favourably in some cases) our results with the classical Raviart-Thomas elemen
    • ā€¦
    corecore