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A TWO-LEVEL ENRICHED FINITE ELEMENT METHOD FOR A

MIXED PROBLEM

ALEJANDRO ALLENDES, GABRIEL R. BARRENECHEA, ERWIN HERNÁNDEZ1,

AND FRÉDÉRIC VALENTIN2

Abstract. The simplest pair of spaces P1/P0 is made inf-sup stable for the mixed form of

the Darcy equation. The key ingredient is enhance the finite element spaces inside a Petrov-

Galerkin framework with functions satisfying element-wise local Darcy problems with right

hand sides depending on the residuals over elements and edges. The enriched method

is symmetric, locally mass conservative and keeps the degrees of freedom of the original

interpolation spaces. First, we assume local enrichments exactly computed and we prove

uniqueness and optimal error estimates in natural norms. Then, a low cost two-level finite

element method is proposed to effectively obtain enhancing basis functions. The approach

lays on a two-scales numerical analysis and shows that well-posedness and optimality is kept

despite of the second level numerical approximation. Several numerical experiments validate

the theoretical results and compares (favourably in some cases) our results with the classical

Raviart-Thomas element.

1. Introduction

The selection of finite dimensional spaces for the Galerkin method demands careful at-

tention when it comes to solve the weak form of mixed boundary value problems. In fact,

mixed problems can be handled by polynomial interpolations if the pair of spaces fulfill the

well-know inf-sup condition [11]. This leads some very popular choices such as equal order

interpolations spaces and the simplest element P1/P0 out of reach, or it prevents nodal values

to be chosen as degrees of freedom if some physical properties (such as local conservation of

mass) are to be satisfied by the numerical method (cf. [9]).

On the quest to systematically build stable and accurate finite element methods, numeri-

cal solutions have been formally decomposed into a solved and an unsolved part with respect

to a fixed mesh. Roughly, the resolved part solves the original weak form on a given finite
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element space regardless any numerical drawback, while the unsolved part comes into play

to make the complete solution to be free of numerical troubles and recover missed physical

properties as well. The final methods are said to incorporate ”missing scales” not captured

by the mesh, and so, named multi-scale methods. Different approaches to model the unsolved

scales have been proposed over the past years, among which we might mention the Varia-

tional Multi-Scale method (VMS) [24] and variations of it [3, 16], the Residual-Free-Bubble

approach (RFB) [14, 27, 13] and its practical implementation using a two-level method [22],

the Heterogeneous Multi-Scale Methods (HMM) [18], and recently, Petrov-Galerkin Enriched

Methods (PGEM) (see [21, 20, 5], and [1] for a survey). Overall, algorithms are closely re-

lated by making the unsolved contribution dependent on geometrical aspects of the mesh,

the interpolation space choice and the boundary value problem itself. In parallel, RFB and

PGEM have been systematically related to stabilized methods and stabilization parameters

been obtained with respect the mean value of enriching basis functions [4, 12, 7, 8, 2].

This work addresses the subject for the Darcy equation, a model that appears in porous

media, in the Petrov-Galerkin enriched framework. The PGEM has been introduced as a

way to incorporate edge residual contribution into the unsolved scale modeling, an aspect

neglected by the RFB and responsible for the non-physical oscillations in the numerical solu-

tions. In [5] the standard trial and test finite element spaces P1/P0 are differently enriched.

The latter remains been enhanced with bubble functions as in the RFB method, but now

the trial space incorporates functions driven by the Darcy operator depending on the resid-

ual of the equation in each element and on each edge of the triangulation. The boundary

conditions for the local problems are set in such a way they ensure the continuity of both

the normal component of the enriched velocity (strongly) and pressure (weakly). Thereby,

the desired features of the P1/P0 element are preserved, namely its simplicity along with its

nodal-valued degrees of freedom for the velocity and the locally mass conservative velocity

field.

Two non symmetric enriched methods were proposed in [5] and extensive numerical val-

idations have been carried out for one of the methods in which the solution to the local

problems is known analytically. However, neither numerical analysis nor numerical valida-

tions have been proposed for the original (two level) method from [5]. This work aims to

overcome these shortcomings and introduce, moreover, a symmetric method. Keeping the

simplest element P1/P0 as the target spaces, and assuming that enriching local problems are

exactly solved, we prove existence and uniqueness for both the original non symmetric and

the symmetric methods, as well as optimal error estimates in natural norms. In fact, we
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show the leading error between both methods tends faster to zero than the error itself when

the characteristic length of the mesh goes to zero.

Next, the semi discrete method analyzed before is completely discretized using a two-level

approach incorporating numerically computed unsolved scales into the enriched method.

The order of convergence is not affected by this approximation under mild conditions on

the fine scale discretization. It is worth mentioning that, up to our knowledge, few works

incorporate fine scales approximation in the numerical analysis. Moreover, a low-cost proce-

dure has been proposed to effectively incorporate the subscales. As a matter of fact, as fine

scale mesh, one single P1 element is used throughout all the numerical experiments, keeping

optimal convergence. Although not theoretically proved, numerical results highlight qua-

dratic convergence for the velocity in the L2 norm, a feature that is clearly not expected for

the Raviart-Thomas element [26, 11]. The comparison with the standard Raviart-Thomas

method is pushed further and allow us to outline the main features of the two-level enriched

method, namely:

• has lower number of degrees of freedom for a fixed mesh;

• induces a symmetric linear system (if we were disposed to relax the symmetry re-

quirement, then an equivalent non symmetric but positive definite system may be

proposed);

• keeps nodal-valued degrees of freedom for the velocity;

• is locally mass conservative.

The remainder of the paper is as follows: the current section ends with notations and

preliminary results; for the sake of completeness the derivation of the PGEM in [5] is revisited

in Section 2, and then, the resulting methods are mathematically analyzed in Section 3.

Section 4 is devoted to the two-level enriched method which is numerically validated in

Section 5. Conclusions are drawn in Section 6.

1.1. Notations. This section introduces definitions and notations used throughout. In what

follows, Ω denotes an open bounded domain in R
2 with polygonal boundary ∂Ω, and x =

(x1, x2) is a typical point in Ω. As usual, L2(Ω) is the space of square integrable functions

over Ω, L2
0(Ω) represents functions belonging to L2(Ω) with zero average in Ω, and H(div,Ω)

(H(curl,Ω)) is composed by functions that belong to L2(Ω)2 with divergence (curl) in L2(Ω).

The space H0(div,Ω) stands for the space of functions belonging to H(div,Ω) which have

normal component vanishing on ∂Ω. Finally, (· , · )D stands for the inner product in L2(D) (or

in L2(D)2, when necessary), and ‖· ‖s,D (|· |s,D) the norm (seminorm) in Hs(D) (or Hs(D)2),

| · |0,D = ‖ · ‖0,D, and ‖· ‖div,D the norm in H(div,D).
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From now on we denote by {TH} a family of regular triangulations of Ω built up using

triangles K with boundary ∂K composed by edges F . The set of internal edges of the

triangulation TH is denoted by EH . The characteristic length of K and F are denoted by

HK and HF , respectively, and H := max{HK : K ∈ TH}, and due to the mesh regularity

there exists a positive constant C such that HF ≤ HK ≤ C HF , for all F ⊆ ∂K. Also, for

each F = K ∩K ′ ∈ EH we choose, once and for all, an unit normal vector n which coincides

with the unit outward normal vector when F ⊆ ∂Ω. The standard outward normal vector

at the edge F with respect to the element K is denoted by nK
F . Moreover, for a function q,

JqK denotes its jump, defined by (see Figure 1):

JqK(x) := lim
δ→0+

q(x + δn) − lim
δ→0−

q(x + δn) ,(1)

and JqK = 0 if F ⊆ ∂Ω. We finally introduce the following broken spaces:

H0(div, TH) := {v ∈ L2(Ω)2 : v
∣

∣

K
∈ H0(div,K)∀K ∈ TH} ,(2)

L2
0(TH) := {q ∈ L2(Ω) : q

∣

∣

K
∈ L2

0(K)∀K ∈ TH} .(3)

n

F

KK ’

Figure 1. The normal vector.

1.2. Preliminaries. In this work we consider the following Darcy problem: Find (u, p) such

that

σu + ∇p = f , ∇ · u = g in Ω,(4)

u · n = 0 on ∂Ω,

where σ = µ
κ
∈ R

+ is assumed constant in Ω, with µ and κ denoting the viscosity and

permeability, respectively. Here, u is the so-called Darcy velocity, p is the pressure, f and

g are given source terms. We suppose f piecewise constant since it is usually related to the

gravity force (see the numerical experiments for an extension to the general case). Moreover,
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we assume that the usual compatibility condition
∫

Ω

g = 0,

holds.

The standard mixed variational formulation associated with (4) reads: Find (u, p) ∈
H0(div,Ω) × L2

0(Ω) such that

A((u, p), (v, q)) = L(v, q) ∀(v, q) ∈ H0(div,Ω) × L2
0(Ω),(5)

where

A((u, p), (v, q)) := (σu,v)Ω − (p,∇·v)Ω − (q,∇·u)Ω, L(v, q) := (f ,v)Ω − (g, q)Ω.

The well-posedness of (5) follows from the classical Babuska-Brezzi theory for variational

problems with constraints (see [11] for details).

2. The enriched finite element method

We start generalizing the derivation carried out in [5]. We introduce the standard finite

element space VH := [VH ]2 ∩H0(div,Ω) for the velocity variable, where

VH := {v ∈ C0
(

Ω
)

: v|K ∈ P1(K), ∀K ∈ TH},(6)

whereas the pressure is discretized using the space

(7) QH := {q0 ∈ L2
0(Ω) : q0|K ∈ P0(K) ∀K ∈ TH} .

Our starting point is the following Petrov-Galerkin scheme: Find uH = u1 + ue ∈ VH +

H0(div,Ω) and pH = p0 + pe ∈ QH ⊕ L2
0(TH) such that

A((uH , pH), (vH , qH)) = L(vH , qH),(8)

for all vH = v1 + vb ∈ VH ⊕H0(div, TH) and for all qH = q0 + qb ∈ QH ⊕ L2
0(TH).

Thanks to the choice made for the test function enrichment space, we can split (8) as the

following system:

A((u1 + ue, p0 + pe), (v1, q0)) = L(v1, q0) ∀ (v1, q0) ∈ VH ×QH ,(9)

A((u1 + ue, p0 + pe), (vb, qb)) = L(vb, qb) ∀ (vb, qb) ∈ H0(div, TH) × L2
0(TH).(10)

First, considering test functions (vb, qb) supported in a single element, we see that (10) is

the weak form of the following strong problem for (ue, pe):

σue + ∇pe = f − σu1, ∇·ue = g + CK in K,(11)
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where CK ∈ R is, a priori, free. Now, to close this problem we impose the following boundary

condition on ue (see [5]):

σue ·n = αF

∫

F

Jp0K ,(12)

on each F ⊆ ∂K∩Ω, and ue·n = 0 on F ⊆ ∂Ω. Here, αF stands for a constant not depending

on H or σ, but that can vary on each F ∈ EH . This choice for boundary condition leads us

to fix the constant CK , which is given by

CK = Jp0K − ΠK(g) :=
1

|K|

3
∑

i=1

αFi
HFi

σ

∫

Fi

Jp0K n·nK
Fi
−
∫

K
g

|K| .

Remark. An alternative method was also derived in [5] by proposing a different boundary

condition (see also [6] for the convergence analysis of a related approach). �

Now, we can split (ue, pe) = (uM
e , p

M
e ) + (uD

e , p
D
e ) + (ug

e, p
g
e), solutions of

σuM
e + ∇pM

e = f − σu1 , ∇ · uM
e = 0 in K,(13)

σuM
e · n = 0 on each F ⊆ ∂K,

σuD
e + ∇pD

e = 0, ∇·uD
e = Jp0K in K,(14)

σuD
e ·n = αF

∫

F

Jp0K on each F ⊆ ∂K ,

and

σug
e + ∇pg

e = 0, ∇·ug
e = g − ΠK(g) in K,(15)

σug
e ·n = 0 on each F ⊆ ∂K ,

respectively. Also, we define the solution operators associated to the above problems such

that we can write

(uM
e , p

M
e ) = (Mu

K(f − σu1),Mp
K(f − σu1)) ,(16)

(uD
e , p

D
e ) = (Du

K(Jp0K),Dp
K(Jp0K)) ,(17)

(ug
e, p

g
e) = (Gu

K(g − ΠK(g)),Gp
K(g − ΠK(g))) ,(18)

and we remark that the local problem (14) may be solved analytically (cf. [5]), which leads

to the following explicit expression for uD
e :

uD
e = Du

K(Jp0K) =
∑

F⊆∂K

αFHF

σ
Jp0KF ϕF ,(19)
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where ϕF is the Raviart-Thomas’ basis function defined by

ϕF (x) = ± HF

2|K|(x − xF ),(20)

xF denotes the node opposite to the edge F and in which the sign on the Raviart-Thomas

basis function ϕF depends on whether the normal vector n on F ⊆ ∂K points inwards or

outwards K.

Now, after the full characterization of (ue, pe) given by (16)-(18), we come back to (9).

First, since pe ∈ L2
0(K) and ∇·v1 |K ∈ R we obtain

(pe,∇·v1)K = 0 for all K ∈ TH .(21)

Therefore, the problem (9) becomes: Find (u1, p0) ∈ VH ×QH such that

A((u1 + ue, p0), (v1, q0)) = L(v1, q0) ∀(v1, q0) ∈ VH ×QH ,(22)

or, equivalently using that ∇ · uM
e = 0 and that ∇ · ug

e = g − ΠK(g) is orthogonal to any

constant in K,

σ (u1 + uM
e + uD

e + ug
e,v1)Ω − (p0,∇ · v1)Ω − (q0,∇ · u1)Ω − (q0,∇ · uD

e )Ω = L(v1, q0) ,

(23)

for all (v1, q0) ∈ VH × QH . Next, integrating by parts in each K ∈ TH and using the

boundary condition (12) we obtain
∑

K∈TH

(q0,∇·uD
e )K =

∑

F∈EH

τF (Jp0K, Jq0K)F ,(24)

where

τF :=
αFHF

σ
.(25)

Remark. The term related to f in (16) vanishes. Indeed, since f is constant in K then it is

easy to realize that Mu
Kf = 0, which leads to uM

e = −σMu
K(u1). �

Finally, based on the previous remark, and replacing (24) and (16)-(18) in (22), we arrive

at the following form of our enriched method: Find (u1, p0) ∈ VH ×QH such that

A((u1 − σMu
K(u1), p0), (v1, q0)) +

∑

K∈TH

(Du
K(Jp0K), σ v1)K

−
∑

F∈EH

τF (Jp0K, Jq0K)F = L(v1, q0) −
∑

K∈TH

(Gu
K(g − ΠK(g)), σv1)K ,

for all (v1, q0) ∈ VH ×QH . Since our aim is to derive a symmetric method, in the following

Lemma we further explore the properties of the operator Mu
K .
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Lemma 1. The linear operator σMu
K is an orthogonal projection with respect to the L2(K)2

inner product. More precisely, for all v ∈ L2(K)2

(v − σMu
K(v),w)K = 0 ,(26)

for all w ∈ H0(div,K) such that ∇ · w = 0 in K. Moreover,

(Mu
K(v),∇ψ)K = 0 ∀ψ ∈ H1(K) .(27)

Proof. To prove (26) we multiply (13) by a function w ∈ H0(div,K) such that ∇ ·w = 0 in

K and integrate by parts to obtain

(σMu
K(v),w)K − (pM

e ,∇ · w)K + (pM
e ,w · n)∂K = (v,w)K ,

and the result follows applying the properties of w. Finally, integrating by parts and using

that Mu
K(v) has a vanishing divergence and normal component (27) follows. �

Remark. Since pM
e ∈ L2

0(K), then (26) is also valid if ∇ · w ∈ R in K. �

Using the previous lemma, and the fact that all Raviart-Thomas’ functions are gradients,

we can give the following presentation for our method: Find (u1, p0) ∈ VH ×QH such that

Bns((u1, p0), (v1, q0)) = L(v1, q0) −
∑

K∈TH

(Gu
K(g − ΠK(g)), σv1)K ,(28)

for all (v1, q0) ∈ VH ×QH , where

Bns((u1, p0), (v1, q0)) := A((ρ(u1), p0), (ρ(v1), q0))

+
∑

K∈TH

(Du
K(Jp0K), σ ρ(v1))K −

∑

F∈EH

τF (Jp0K, Jq0K)F .

To simplify the notation we have noted

ρ(v)|K := (I − σMu
K)(v) ,(29)

where I stands for the identity operator.

Remark. Let (uH , pH) := (u1 + ue, p0 + pe). Then, (28) implies that

(uH ,v1)Ω − (pH ,∇ · v1)Ω = (f ,v1)Ω ∀v1 ∈ VH ,

and hence, integrating by parts and using that uH + ∇pH = f in each K we see that pH

satisfies
∑

F∈EH

(JpHK,v1 · n)F = 0 ∀v1 ∈ VH .(30)
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Then, when enhanced with pe, the discrete pressure is weakly continuous. On the other

hand, since we have also JuH · nK = 0 we see that J∇pH · nK = 0 on the internal edges.

Hence, our method satisfies naturally the conditions requested in [10] in the discontinuous

Galerkin framework. �

To complete the derivation we only have to notice that we can neglect the nonsymmetric

term. This is ensured by the next lemma. As a matter of fact, the following result ensures

us that the nonsymmetric term is of a smaller size than the rest of the terms, and then in

Lemma 11 below we will show that the solution of (28) and the solution of the symmetric

method (32) below are superclose in the natural norms.

Lemma 2. There exists a positive constant C such that

∑

K∈TH

(Du
K(Jq0K), σ ρ(v1))K ≤ C

{

∑

F∈EH

τF ‖Jq0K‖2
0,F

}
1

2 √
σαH ‖ρ(v1)‖0,Ω ,(31)

for all v1 ∈ VH and q0 ∈ QH ,where α := max{αF : F ∈ EH}.

Proof. Using successively the Cauchy-Schwarz inequality, (19), ‖ϕF‖0,K ≤ C HF , the defini-

tion of τF (cf. (25)) and the mesh regularity we get

∑

K∈TH

(Du
K(Jq0K), σ ρ(v1))Ω ≤

∑

K∈TH

‖Du
K(Jq0K)‖0,K σ ‖ρ(v1)‖0,K

≤
∑

K∈TH

∑

F⊆∂K

αF

σ

∫

F

|Jq0K| ‖ϕF‖0,K σ ‖ρ(v1)‖0,K

≤ C
∑

K∈TH

∑

F⊆∂K

τF H
1

2

F ‖Jq0K‖0,F σ ‖ρ(v1)‖0,K

≤ C

{

∑

F∈EH

τF ‖Jq0K‖2
0,F

}
1

2

H
√
σ α ‖ρ(v1)‖0,Ω ,

which ends the proof. �

Hence, using this result we arrive at the following symmetric (and final) form of our

Petrov-Galerkin Enriched Method: Find (u1, p0) ∈ VH ×QH such that

B((u1, p0), (v1, q0)) = F(v1, q0) ,(32)
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for all (v1, q0) ∈ VH ×QH , where

B((u1, p0), (v1, q0)) := A((ρ(u1), p0), (ρ(v1), q0)) −
∑

F∈EH

τF (Jp0K, Jq0K)F ,(33)

F(v1, q0) := L(v1, q0) −
∑

K∈TH

(Gu
K(g − ΠK(g)), σv1)K ,(34)

ρ is the operator defined in (29), and the coefficient τF is defined in (25).

We end this section by presenting the local mass conservation result. The proof of this

Lemma is a direct application of the results from [6], §2.3, and hence we skip the details.

We only stress here the fact that the techniques developed here may be applied to any

jump-based stabilized finite element method for the Darcy equation, and then, every low

order method (e.g. the one from [15]) may be easily post-processed in order to get a locally

conservative velocity field.

Lemma 3. Let u1 be the solution of (32) and uD
e given by (19). Then

∫

K

∇ · (u1 + uD
e ) − g = 0 ∀K ∈ TH .

3. Error analysis of the semidiscrete problem

In the sequel C denotes a generic positive constant, independent of H or σ, with values

that may vary in each occurrence. From now on, and just for simplicity of the presentation,

we will assume that αF = α for all F ∈ EH .

3.1. Preliminairies. We start by presenting the Clément interpolation operator (cf. [17,

23, 19]) CH : H1(Ω) → VH (with the obvious extension to vector-valued functions), satisfying,

for all K ∈ TH and all F ∈ EH ,

‖CH(v)‖1,Ω ≤ Ccle ‖v‖1,Ω ∀v ∈ H1(Ω) ,(35)

‖v − CH(v)‖m,K ≤ CcleH
t−m
K |v|t,ωK

∀v ∈ H t(ωK) ,(36)

‖v − CH(v)‖0,F ≤ CcleH
t− 1

2

F |v|t,ωF
∀v ∈ H t(ωF ) ,(37)

for t = 1, 2, m = 0, 1, where ωK = {K ′ ∈ TH : K∩K ′ 6= ∅} and ωF = {K ∈ TH : K∩F 6= ∅}.
We will also use the L2(Ω) projection onto QH which is denoted by ΠH : L2(Ω) → QH .

This projection satisfies (cf. [19])

{

∑

K∈TH

‖q − ΠH(q)‖2
m,K

}
1

2

≤ C H t−m |q|t,Ω ∀ q ∈ H t(Ω) ,(38)
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for 0 ≤ m ≤ t ≤ 1. Moreover, using (38) and the following local trace inequality: there

exists Ct such that for all K ∈ TH and all v ∈ H1(K)

‖v‖2
0,∂K ≤ Ct

(

H−1
K ‖v‖2

0,K +HK |v|21,K

)

,(39)

we obtain

(40)
[

∑

F∈EH

HF ‖Jq − ΠH(q)K‖2
0,F

]1/2

≤ C H |q|1,Ω.

Before heading to stability, two auxiliary results are stated next.

Lemma 4. There exist two constants C,C ′ > 0 such that, for allK ∈ TH and all v1 ∈ P1(K)2

CH
1

2

K ‖v1 · n‖0,∂K ≤ ‖v1‖0,K ≤ C ′H
1

2

K ‖v1 · n‖0,∂K .

Proof. First, using (39) and an inverse inequality it follows that

‖v1 · n‖2
0,∂K ≤ Ct (H−1

K ‖v1‖2
0,K +HK |v1|21,K) ≤ CH−1

K ‖v1‖2
0,K ,(41)

and the first inequality follows. Let now K̂ be the standard reference element of vertices

(0, 0), (1, 0) and (0, 1). Since in P1(K̂)2 both quantities ‖ŵ1‖0,K̂ and ‖ŵ1 · n‖0,∂K̂ define

norms, there exists C > 0 such that

‖ŵ1‖0,K̂ ≤ C‖ŵ1 · n̂‖0,∂K̂ ,(42)

for all ŵ1 ∈ P1(K̂)2. Let now v̂1 be the Piola transform of v1 (cf. [11]). Using the definition

of the Piola transform, (42) and the fact that v1 · n = H−1
F v̂1 · n̂, we get

‖v1‖2
0,K ≤ C ‖v̂1‖2

0,K̂

≤ C ‖v̂1 · n̂‖2
0,∂K̂

= C
∑

F̂⊆∂K̂

∫

F̂

(v̂1 · n̂)2

= C
∑

F⊆∂K

∫

F

H−1
F H2

F (v1 · n)2

≤ CHK ‖v1 · n‖2
0,∂K ,

and the result follows. �

We now define the following mesh-dependent norm

‖(v, q)‖2
H := σ ‖v‖2

div,Ω +
α

σ
‖q‖2

0,Ω +
∑

F∈EH

τF ‖JqK‖2
0,F ,(43)



12 A. ALLENDES, G.R. BARRENECHEA, E. HERNÁNDEZ, AND F. VALENTIN

and present the following result which will be fundamental in the proof of the inf-sup condi-

tion below.

Lemma 5. There exists C > 0 such that, for all (v1, q0) ∈ VH ×QH ,

‖(v1, q0)‖H ≤ C ‖(ρ(v1), q0)‖H .

Proof. First, using an inverse inequality, the mesh regularity, ρ(v1) ·n = v1 ·n, and the fact

that ‖v1 · n‖−1/2,∂K ≤ ‖v1‖div,K we obtain

‖v1 · n‖2
0,∂K =

∑

F⊆∂K

‖v1 · n‖2
0,F

≤ C
∑

F⊆∂K

H−1
F ‖v1 · n‖2

−1/2,F

≤ 3C H−1
K ‖v1 · n‖2

−1/2,∂K

= C H−1
K ‖ρ(v1) · n‖2

−1/2,∂K

≤ C H−1
K ( ‖ρ(v1)‖2

0,K + ‖∇ · v1‖2
0,K) ,

and then

HK ‖v1 · n‖2
0,∂K ≤ C ( ‖ρ(v1)‖2

0,K + ‖∇ · v1‖2
0,K) .(44)

The result follows applying Lemma 4, the definition of the norm ‖ · ‖H and the fact that

Mu
K(v1) is a solenoidal function. �

We end this section by proving some technical results involving the operators σMu
K and

ρ|K = I − σMu
K .

Lemma 6. Let K ∈ TH . Then, for all v ∈ H1(K)2 there holds

i) (ρ(v),v)K = ‖ρ(v)‖2
0,K ;

ii) ‖ρ(v)‖2
0,K = ‖v‖2

0,K − ‖v − ρ(v)‖2
0,K ;

iii) ‖σMu
K(v)‖0,K ≤ ‖v‖0,K ; ‖ρ(v)‖0,K ≤ ‖v‖0,K ;

iv) ‖v − ρ(v)‖0,K ≤ HK

π
|v|1,K .

Proof. The first three items follow directly from the fact that σMu
K (and hence, ρ) is an

orthogonal projection with respect to the L2(K)2 inner product. To prove iv), let v ∈ H1(K)2

and let us denote v0 = ΠK(v). Since v0 is a constant in each element, there holds that

Mu
K(v0) = 0 and then using iii) we arrive at

‖v − ρ(v)‖0,K = ‖σMu
K(v)‖0,K = ‖σMu

K(v − v0)‖0,K ≤ ‖v − v0‖0,K .
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Finally, in [25] the following optimal Poincaré inequality is proved

(45) inf
c∈R

‖v − c‖0,K ≤ HK

π
|v|1,K ∀ v ∈ H1(K) ,

and iv) follows. �

3.2. Stability and convergence. Before proving the stability we recall that, for all q0 ∈ QH

there exists (cf. [23]) w ∈ H1
0 (Ω)2 such that

∇ · w = − 1

σ
q0 in Ω and ‖w‖1,Ω ≤ C1

σ
‖q0‖0,Ω ,(46)

where C1 depends only on Ω.

Theorem 7. Let us suppose that α ≤ min{ 1
2Ct
, 3

8
}. Then, there exists β > 0, independent

of H, σ and α, such that

sup
(w1,t0)∈VH×QH−{0}

B((v1, q0), (w1, t0))

‖(w1, t0)‖H

≥ β ‖(v1, q0)‖H ,

for all (v1, q0) ∈ VH ×QH , and the problem (32) is well posed.

Proof: Let (v1, q0) ∈ VH ×QH . Then, from the definition of B it follows that

B((v1, q0), (v1,−q0)) = σ ‖ρ(v1)‖2
0,Ω +

∑

F∈EH

τF ‖Jq0K‖2
0,F .(47)

Next, we see that since ∇ · v1 ∈ QH for all v1 ∈ VH , then we can take −σ∇ · v1 as test

function leading to

B((v1, q0), (0,−σ∇ · v1)) = σ ‖∇ · v1‖2
0,Ω + σ

∑

F∈EH

τF (Jq0K, J∇ · v1K)F

≥ σ ‖∇ · v1‖2
0,Ω − σ2

2

∑

F∈EH

τF‖J∇ · v1K‖2
0,F − 1

2

∑

F∈EH

τF‖Jq0K‖2
0,F .(48)

Using (39) we obtain

∑

F∈EH

τF‖J∇ · v1K‖2
0,F ≤ 2α

σ

∑

K∈TH

HK ‖∇ · v1‖2
0,∂K

≤ 2Ctα

σ

∑

K∈TH

‖∇ · v1‖2
0,K =

2Ctα

σ
‖∇ · v1‖2

0,Ω ,

and then (48) becomes

B((v1, q0), (0,−σ∇ · v1)) ≥ σ (1 − Ctα) ‖∇ · v1‖2
0,Ω − 1

2

∑

F∈EH

τF‖Jq0K‖2
0,F .(49)



14 A. ALLENDES, G.R. BARRENECHEA, E. HERNÁNDEZ, AND F. VALENTIN

Let now w ∈ H1
0 (Ω)2 be given by (46) and let w1 := CH(w). Integrating by parts, using

(37), the mesh regularity and (46) we arrive at

1

σ
‖q0‖2

0,Ω = −(q0,∇ · w)Ω

= −(q0,∇ · (w − w1))Ω − (q0,∇ · w1)Ω

= −
∑

F∈EH

(Jq0K, (w − w1) · n)F − (q0,∇ · w1)Ω

≤ Ccle

∑

F∈EH

H
1

2

F ‖Jq0K‖0,F |w|1,ωF
− (q0,∇ · w1)Ω

≤
√

3CcleC1

{

∑

F∈EH

HF

σ
‖Jq0K‖2

0,F

}
1

2 ‖q0‖0,Ω√
σ

− (q0,∇ · w1)Ω ,

and then

−(q0,∇ · w1)Ω ≥ 1

2σ
‖q0‖2

0,Ω − C2

α

∑

F∈EH

τF ‖Jq0K‖2
0,F ,(50)

where C2 =
3C2

cle
C2

1

2
. From Lemma 6-iii), (35) and (46), we then obtain

B((v1, q0), (w1, 0)) = σ (ρ(v1), ρ(w1))Ω − (q0,∇ · w1)Ω

≥ −γ−1
1 σ ‖ρ(v1)‖2

0,Ω − σ γ1 ‖ρ(w1)‖2
0,Ω

+
1

2σ
‖q0‖2

0,Ω − C2

α

∑

F∈EH

τF‖Jq0K‖2
0,F

≥ 1

σ

(

1

2
− C2

1C
2
cle γ1

)

‖q0‖2
0,Ω − γ−1

1 σ ‖ρ(v1)‖2
0,Ω − C2

α

∑

F∈EH

τF‖Jq0K‖2
0,F

=
1

4σ
‖q0‖2

0,Ω − 4C2
cleC

2
1σ ‖ρ(v1)‖2

0,Ω − C2

α

∑

F∈EH

τF‖Jq0K‖2
0,F ,(51)

choosing γ1 = 1
4C2

cle
C2

1

.
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Finally, let (z1, t0) := (v1,−q0) + δ1(0,−σ∇ · v1) + δ2(w1, 0) with δ1, δ2 > 0. Then,

collecting (47), (49) and (51) we obtain

B((v1, q0), (z1, t0)) ≥ σ ‖ρ(v1)‖2
0,Ω +

∑

F∈EH

τF‖Jq0K‖2
0,F

+ δ1σ (1 − Ctα) ‖∇ · v1‖2
0,Ω − δ1

2

∑

F∈EH

τF‖Jq0K‖2
0,F

+
δ2
4σ

‖q0‖2
0,Ω − 4δ2C

2
cleC

2
1σ ‖ρ(v1)‖2

0,Ω − δ2C2

α

∑

F∈EH

τF‖Jq0K‖2
0,F

= σ
(

1 − 4δ2C
2
cleC

2
1

)

‖ρ(v1)‖2
0,Ω + δ1σ (1 − Ctα) ‖∇ · v1‖2

0,Ω +
δ2
4σ

‖q0‖2
0,Ω

+

(

1 − δ1
2
− δ2C2

α

)

∑

F∈EH

τF‖Jq0K‖2
0,F

≥ C ‖(ρ(v1), q0)‖2
H ,(52)

if α ≤ 1
2Ct

, δ1 ≤ 1
2

and δ2 = α
2C2

, thus guarantying that C > 0 is independent of α. The

result follows then using Lemma 5 and the fact that, thanks to the choice of δ2, ‖(z1, t0)‖H ≤
C ‖(v1, q0)‖H , where C does not depend on α. �

Remark. If we look carefully at the proof of the last result, we may see that, since the

quantity ‖ρ(v1)‖0,Ω defines a norm in VH , the well-posedeness of (32) follows directly from

(47), independently of the value of α. The reason to prove an inf-sup condition is the control

in the norm of the divergence, which, thanks to Lemma 5 allow us to prove an error estimate

for u − u1, instead of u − ρ(u1), that would arise naturally from (47). �.

Next, we present the following consistency result.

Lemma 8. Let (u, p) ∈ H0(div,Ω)×[H1(Ω)∩L2
0(Ω)] be the weak solution of (5) and (u1, p0)

the solution of (32), respectively. Then,

B
(

(u − u1, p− p0), (v1, q0)
)

≤ C σH |u|1,Ω‖v1‖0,Ω ,

for all (v1, q0) ∈ VH ×QH .
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Proof. Noting that JpK = 0 a.e. across all the internal edges, and from the definition of B

we easily see that

B
(

(u, p), (v1, q0)
)

= A((u, p), (v1, q0)) −
∑

K∈TH

σ (σMu
K(u),v1)K

+
∑

K∈TH

(Gu
K(∇ · u − ΠK(∇ · u) − g + ΠK(g)), σv1)K

= F(v1, q0) −
∑

K∈TH

σ (σMu
K(u),v1)K +

∑

K∈TH

(Gu
K(∇ · u − ΠK(∇ · u)), σv1)K

= B((u1, p0), (v1, q0)) −
∑

K∈TH

σ (σMu
K(u),v1)K +

∑

K∈TH

(Gu
K(∇ · u − ΠK(∇ · u)), σv1)K ,

and then

B
(

(u − u1, p− p0), (v1, q0)
)

≤
∑

K∈TH

(‖σMu
K(u)‖0,K + ‖Gu

K(∇ · u − ΠK(∇ · u))‖0,K)σ‖v1‖0,K .

(53)

Next, to bound the term ‖Gu
K(∇ ·u−ΠK(∇ ·u))‖0,K we follow very closely the results from

[6], Appendix A. First, we recall that, from (18), the problem satisfied by w := Gu
K(∇ · u −

ΠK(∇ · u)) is given by

w + ∇η = 0 , ∇ · w = ∇ · u − ΠK(∇ · u) in K ,(54)

w · n = 0 on ∂K ,

where η ∈ L2
0(K). Now, multiplying the first equation in (54) by w, the second by η, adding

both and integrating by parts we arrive at

σ ‖w‖2
0,K = (∇ · u − ΠK(∇ · u), η)K ≤ ‖∇ · u − ΠK(∇ · u)‖0,K‖η‖0,K ,

and since η ∈ L2
0(K) then ‖η‖0,K ≤ HK

π
|η|1,K = HK

π
‖w‖0,K and we get

σ ‖w‖2
0,K ≤ HK

π
‖∇ · u − ΠK(∇ · u)‖0,K |η|1,K ≤ HK

π
‖∇ · u‖0,K‖w‖0,K ,

which leads to

‖Gu
K(∇ · u − ΠK(∇ · u))‖0,K ≤ HK

σπ
‖∇ · u‖0,K .

The result follows from (53) and Lemma 6-iv). �

With this result in mind we can present the following convergence result.
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Theorem 9. Let us suppose that (u, p), solution of (5) belongs to H2(Ω)2 ×H1(Ω), and let

(u1, p0) be the solution of (32). Then, there exists C > 0, independent of H, σ and α, such

that

‖(u − u1, p− p0)‖H ≤ CH

(
√

σ

α
‖u‖2,Ω +

1√
σ
|p|1,Ω

)

.

Proof: First, let (v1, q0) := (CH(u),ΠH(p)). Then, from Theorem 7 there exists (w1, t0) ∈
VH ×QH such that ‖(w1, t0)‖H = 1 and

β ‖(u1 − v1, p0 − q0)‖H ≤ B((u1 − v1, p0 − q0), (w1, t0)) .

Now, using Lemmas 5 and 8, the Cauchy-Schwarz’s inequality, the fact that (p−q0,∇·w1)Ω =

0 and (36)-(38), we obtain

β ‖(u1 − v1, p0 − q0)‖H ≤ B((u − v1, p− q0), (w1, t0)) + B((u1 − u, p0 − p), (w1, t0))

= σ (ρ(u − v1), ρ(w1))Ω − (p− q0,∇ · w1)Ω − (t0,∇ · (u − v1))Ω

−
∑

F∈EH

τF (Jp− q0K, Jt0K)F + B((u1 − u, p0 − p), (w1, t0))

≤ C

{

σ ‖ρ(u − v1)‖2
0,Ω +

σ

α
‖∇ · (u − v1)‖2

0,Ω +
∑

F∈EH

τF‖Jp− q0K‖2
0,F + σH2 |u|21,Ω

}
1

2

{

σ ‖ρ(w1)‖2
0,Ω +

α

σ
‖t0‖2

0,Ω +
∑

F∈EH

τF‖Jt0K‖2
0,F + σ ‖w1‖2

0,Ω

}
1

2

≤ C

{

σ

α
‖u − v1‖2

div,Ω +
∑

F∈EH

τF‖Jp− q0K‖2
0,F + σH2 |u|21,Ω

}
1

2

≤ CH

(
√

σ

α
‖u‖2,Ω +

α√
σ
|p|1,Ω

)

,

and the result follows using the triangle inequality. �

Next, as it was mentioned in the previous section, in order to provide a mass conservative

velocity field we must enhance u1 with the Raviart-Thomas’ field uD
e . The next result shows

that this fact does not undermine the convergence of the method.
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Corollary 10. Let (u, p) and (u1, p0) be the solutions of (5) and (32), respectively. Then,

under the hypothesis of the previous Theorem there exists C such that

‖u − u1 − uD
e ‖div,Ω ≤ C H

(

1√
α
‖u‖2,Ω +

1

σ
|p|1,Ω

)

,(55)

‖u − u1 − uM
e − uD

e ‖div,Ω ≤ C H

(

1√
α
‖u‖2,Ω +

1

σ
|p|1,Ω

)

,(56)

where uD
e is given by (19) and uM

e |K = −σMu
K(u1).

Proof. We use the local mass conservation feature to prove (55). In fact, from Lemma 3 we

obtain that
∫

K

∇ · (u1 + uD
e ) =

∫

K

g ∀K ∈ TH ,(57)

and then ∇ · (u1 + uD
e )|K = ΠK(g) in each K, which leads to

‖∇ · (u − u1 − uD
e )‖0,K = ‖g − ΠK(g)‖0,K ≤ HK

π
|∇ · u|1,K .(58)

Following the same arguments from the proof of Lemma 2 we can prove that

‖uD
e ‖0,Ω ≤ C σ− 1

2H

{

∑

F∈EH

τF ‖Jp− p0K‖2
0,F

}
1

2

,(59)

and then using the previous theorem we obtain

‖u − u1 − uD
e ‖0,Ω ≤ C H

(

1√
α
‖u‖2,Ω +

1

σ
|p|1,Ω

)

,(60)

and (55) follows from (58), (60) and Theorem 9.

Next, to prove (56) we recall that uM
e = −σMu

K(u1) = −u1 + ρ(u1), and then using (59)

and Lemma 6

‖u − ρ(u1) − uD
e ‖0,Ω ≤ ‖u − ρ(u)‖0,Ω + ‖ρ(u) − ρ(u1)‖0,Ω + ‖uD

e ‖0,Ω

≤ C H |u|1,Ω + ‖u − u1‖0,Ω + C
H√
σ
‖(u − u1, p− p0)‖H ,

and the result follows using the previous theorem and the fact that uM
e is solenoidal. �

We end this section by explaining more in depth why we can actually neglect the non-

symmetric term.
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Lemma 11. Let us suppose that α is small enough. Then, there exists β1 > 0, independent

of H and α, such that

β1 ‖(v1, q0)‖H ≤ sup
(w1,t0)∈VH×QH−{0}

Bns((v1, q0), (w1, t0))

‖(w1, t0)‖H

,

for all (v1, q0) ∈ VH ×QH . Furthermore, there exists C > 0 independent of H, σ and α such

that

‖(u1 − û1, p0 − p̂0)‖H ≤ C H2

(√
σ |u|2,Ω +

1√
σ
|p|1,Ω

)

,

where (u1, p0) and (û1, p̂0) are the solutions of (32) and (28), respectively.

Proof. For the inf-sup condition we start noting that, from the definition of Bns and Lemma

2 there follows that

Bns((v1, q0), (v1,−q0)) = σ ‖ρ(v1)‖2
0,K +

∑

K∈TH

(Du
K(Jq0K), ρ(v1))K +

∑

F∈EH

τF ‖Jq0K‖2
0,F

≥ σ

2

(

1 − αC2
∗H

2
)

‖ρ(v1)‖2
0,K +

1

2

∑

F∈EH

τF ‖Jq0K‖2
0,F

≥ 3σ

8
‖ρ(v1)‖2

0,K +
1

2

∑

F∈EH

τF ‖Jq0K‖2
0,F .(61)

if we suppose that α satisfies α ≤ 1
4C2

∗
H2 , where C∗ is the constant from Lemma 2. The

remaining part of the proof of the inf-sup condition is completely analogous to the proof of

Theorem 7, and then we skip the details. To prove the error estimate, we see that, from the

inf-sup condition and using the definition of B and Bns and Lemma 2 we have

β1 ‖(u1 − û1, p0 − p̂0)‖H ≤ sup
(w1,t0)∈VH×QH−{0}

Bns((u1 − û1, p0 − p̂0), (w1, t0))

‖(w1, t0)‖H

= sup
(w1,t0)∈VH×QH−{0}

Bns((u1, p0), (w1, t0)) − F(w1, t0)

‖(w1, t0)‖H

= sup
(w1,t0)∈VH×QH−{0}

∑

K∈TH
(Du

K(Jp0K), σw1)K

‖(w1, t0)‖H

≤ √
αCH

{

∑

F∈EH

τF ‖Jp− p0K‖2
0,F

}
1

2

≤ √
αCH ‖(u − u1, p− p0)‖H ,

and the result follows using Theorem 9. �
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4. A two-level finite element method

First we start remarking that, from the definition of MK and GK (cf. (16)-(18)) it follows

that

ρ(v1) = v1 − σMu
K(v1) = ∇Mp

K(v1) and σ Gu
K(g − ΠK(g)) = −∇Gp

K(g − ΠK(g)) ,

(62)

and then the method (32) may be rewritten in the following equivalent way
∑

K∈TH

σ (∇Mp
K(u1),∇Mp

K(v1))K − (p0,∇ · v1)Ω − (q0,∇ · u1)Ω −
∑

F∈EH

τF (Jp0K, Jq0K)F

= (f ,v1)Ω − (g, q0)Ω +
∑

K∈TH

(∇Gp
K(g − ΠK(g)),v1)K ,(63)

for all (v1, q0) ∈ VH × QH . Let us further remark that, from (13) and (15) the functions

pM
e (v1) = Mp

K(v1) and pg
e = Gp

K(g − ΠK(g)) may be computed by solving the following

Neumann problems in each K ∈ TH

−∆pM
e (v1) = −∇ · v1 in K ,(64)

∂np
M
e (v1) = v1 · n on ∂K ,

and

−∆pg
e = σ (g − ΠK(g)) in K ,(65)

∂np
g
e = 0 on ∂K ,

respectively. Using these writings for the local problems a two-level finite element method

arises by replacing pM
e and pg

e in (63) by suitable finite element approximations. To do this,

let, for each K ∈ TH , {T K
h }h>0 be a regular family of triangulations of K built using triangles

K̄ ⊆ K with diameter less or equal than h (the value for h may vary from one element to

another, but for simplicity of the presentation it will always be denoted by h), and let

RK
h := {ξh ∈ C0(K) : ξh|K̄ ∈ Pl(K̄) , ∀K̄ ∈ T K

h } ,(66)

where l ≥ 1. Hence, we propose the following discretizations for (64) and (65): Find ph(v1) ∈
RK

h such that
∫

K

∇ph(v1) · ∇ξh =

∫

K

v1 · ∇ξh ∀ξh ∈ RK
h ,(67)

and: Find pg
h ∈ RK

h such that
∫

K

∇pg
h · ∇ξh = σ

∫

K

(g − ΠK(g))ξh ∀ξh ∈ RK
h ,(68)
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respectively. With these approximations we introduce then our two-level finite element

method: Find (u1,h, p0,h) ∈ VH ×QH such that:

Bh((u1,h, p0,h), (v1, q0)) = Fh(v1, q0) ∀ (v1, q0) ∈ VH ×QH ,(69)

where

Bh((v1, q0), (w1, t0)) :=
∑

K∈TH

σ (∇ph(v1),∇ph(w1))K − (q0,∇ · w1)Ω − (t0,∇ · v1)Ω(70)

−
∑

F∈EH

τF (Jq0K, Jt0K)F ,

and

Fh(v1, q0) := (f ,v1)Ω − (g, q0)Ω +
∑

K∈TH

(∇pg
h,v1)K ,(71)

respectively.

4.1. Numerical analysis of the fully discrete method. To prove stability we start

proving the following lemma.

Lemma 12. There exists C > 0, independent of H, h, σ and K, such that

|pM
e (v)|1,K ≤ ‖v‖0,K ,(72)

|pM
e (v) − ph(v)|1,K ≤ Ch |v|1,K ,(73)

|pg
e − pg

h|1,K ≤ ChH t
K

σ
|g|t,K ,(74)

for all v ∈ H1(K)2, and for t = 0, 1.

Proof. For the first estimate we consider ξh = ph(v) in (67) and apply the Cauchy-Schwarz’s

inequality to prove that |ph(v)|21,K ≤ ‖v‖0,K |ph(v)|1,K .

For the remaining parts, we start by stating the following result from [23], Theorem 3.9,

p. 55 (which is also valid in two space dimensions): If w ∈ H0(div,K) ∩H(curl,K), then

w ∈ H1(K)2 and satisfies

|w|1,K ≤ ‖∇ · w‖0,K + ‖curl(w)‖0,K .(75)

Then, recalling the mixed form of the problem satisfied by pM
e (v), i.e.,:

uM
e (v) + ∇pM

e (v) = v , ∇ · uM
e (v) = 0 in K ,(76)

uM
e (v) · n = 0 on ∂K ,
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and taking the curl from the first equation in (76) we see that uM
e (v) ∈ H0(div,K) ∩

H(curl,K) which implies uM
e (v) ∈ H1(K)2, and satisfies (75). From (76) we see then that

pM
e (v) ∈ H2(K) and satisfies

|pM
e (v)|2,K ≤ |uM

e (v)|1,K + |v|1,K ≤ ‖curl(v)‖0,K + |v|1,K ,(77)

which leads to

|pM
e (v) − ph(v)|1,K ≤ Ch |pM

e (v)|2,K ≤ Ch |v|1,K ,

where we have used the fact that l ≥ 1 and standard finite element estimates (see, e.g., [19]).

Following analogous steps we can prove (74). �

The next result may be seen as a fully discrete version of Lemma 5.

Lemma 13. Let ‖ · ‖h be the mesh-dependent norm given by

‖(v1, q0)‖2
h :=

∑

K∈TH

σ ‖∇ph(v1)‖2
0,K + σ ‖∇ · v1‖2

0,Ω +
α

σ
‖q0‖2

0,Ω +
∑

F∈EH

τF ‖Jq0K‖2
0,F ,

and let us suppose that there exists C0 > 0 such that h ≤ C0HK , for all K ∈ TH . Then,

there exists C > 0 independent of H, h, σ or α such that

‖(v1, q0)‖H ≤ C ‖(v1, q0)‖h ,(78)

for all (v1, q0) ∈ VH ×QH .

Proof. From Lemma 5 we know that there exists C > 0 such that

‖(v1, q0)‖2
H ≤ C ‖(ρ(v1), q0)‖2

H

= C

{

∑

K∈TH

σ ‖∇pM
e (v1)‖2

0,K + σ ‖∇ · v1‖2
0,Ω +

α

σ
‖q0‖2

0,Ω +
∑

F∈EH

τF ‖Jq0K‖2
0,F

}

≤ C

{

∑

K∈TH

σ |pM
e (v1) − ph(v1)|21,K + ‖(v1, q0)‖2

h

}

.(79)

Now, using Lemma 12 and an inverse inequality we obtain

|pM
e (v1) − ph(v1)|21,K ≤ Ch2 |pM

e (v1)|22,K ≤ Ch2 |v1|21,K ≤ Ch2H−2
K ‖v1‖2

0,K ,

and then (79) becomes

‖(v1, q0)‖2
H ≤ C σ

∑

K∈TH

h2H−2
K ‖v1‖2

0,K + C ‖(v1, q0)‖2
h ,

and the result follows supposing that h ≤ HK√
2C

. �
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Remark. As will be clear after the following lemma, the last result shows us, in particular,

that it is enough to choose in advance one type of mesh to solve the local problems in each

element, without the need to refine the subgrid mesh if the coarse mesh is refined, and

independently of having a coarse mesh with very different sizes. Hence, the computation of

ph(v1) has the same cost over all the elements and it can be indeed inexpensive. �

Lemma 14. Under the hypothesis of the previous lemma, there exists β2 > 0 independent

of H, h and α such that

sup
(w1,t0)∈VH×QH

Bh((v1, q0), (w1, t0))

‖(w1, t0)‖H

≥ β2 ‖(v1, q0)‖H ,(80)

for all (v1, q0) ∈ VH ×QH .

Proof. Let (v1, q0) ∈ VH×QH . Following exactly the same arguments from Theorem 7 (using

this time (72) in (51)), we can build (z1, t0) ∈ VH ×QH such that ‖(z1, t0)‖h ≤ C ‖(v1, q0)‖h

with C independent of H, h, σ and α, and such that

Bh((v1, q0), (z1, t0)) ≥ C ‖(v1, q0)‖2
h ,(81)

and the result follows from Lemma 13. �

We end this section by proving the main error estimate for the method (69).

Theorem 15. Under all the previous hypothesis, there exists C > 0 independent of H, h, σ

and α such that

‖(u − u1,h, p− p0,h)‖H ≤ C

(

hH t

√
σ

|g|t,Ω +

√

σ

α
(H + h) ‖u‖2,Ω +

H√
σ
|p|1,Ω

)

,(82)

for t = 0, 1.

Proof. Let (v1, q0) = (CH(u),ΠH(p)), then

‖(u − u1,h, p− p0,h)‖H ≤ ‖(u − v1, p− q0)‖H + ‖(u1,h − v1, p0,h − q0)‖H .

The first term is easily estimated using (36), (38) and (40). For the second one, from Lemma

14 there exists (w1, t0) ∈ VH ×QH satisfying ‖(w1, t0)‖H = 1 and

β2 ‖(u1,h − v1, p0,h − q0)‖H ≤ Bh((u1,h − v1, p0,h − q0), (w1, t0))

= Bh((u1,h − u, p0,h − p), (w1, t0)) + Bh((u − v1, p− q0), (w1, t0)) .
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Now, since (p− q0,∇ · w1)Ω = 0, it follows that

Bh((u − v1, p− q0), (w1, t0)) =

=
∑

K∈TH

σ (∇ph(u − v1),∇ph(w1))K − (t0,∇ · (u − v1))Ω −
∑

K∈TH

τF (Jp− q0K, Jt0K)F

≤
∑

K∈TH

σ |ph(u − v1)|1,K |ph(w1)|1,K + ‖t0‖0,Ω‖∇ · (u − v1)‖0,Ω

+
∑

F∈EH

τF ‖Jp− q0K‖0,F‖Jt0K‖0,F .

Hence, using (72), (36), (38),(40) and ‖(w1, t0)‖H = 1 we arrive at

Bh((u − v1, p− q0), (w1, t0)) ≤
∑

K∈TH

σ ‖u − v1‖0,K‖w1‖0,K + ‖t0‖0,Ω‖∇ · (u − v1)‖0,Ω

+
∑

F∈EH

τF ‖Jp− q0K‖0,F‖Jt0K‖0,F

≤ C

(

∑

K∈TH

σH4
K |u|22,ωK

+
H2 σ

α
|u|22,Ω +

H2

σ
|p|21,Ω

)
1

2

.

To bound the remaining term, we use that JpK = 0 and the definition of Bh and B to obtain

Bh((u1,h − u, p0,h − p), (w1, t0)) = Bh((u1,h, p0,h), (w1, t0)) − Bh((u, p), (w1, t0))

= Fh(w1, t0) −
{

∑

K∈TH

σ (∇ph(u),∇ph(w1))K − (p,∇ · w1)Ω − (t0,∇ · u)Ω

}

= Fh(w1, t0) −
{

∑

K∈TH

σ (∇pM
e (u),∇pM

e (w1))K − (p,∇ · w1)Ω − (t0,∇ · u)Ω

}

+
∑

K∈TH

σ
[

(∇pM
e (u),∇pM

e (w1))K − (∇ph(u),∇ph(w1))K

]

= Fh(w1, t0) − B((u, p), (w1, t0))

+
∑

K∈TH

σ
[

(∇pM
e (u) −∇ph(u),∇pM

e (w1))K + (∇ph(u),∇pM
e (w1) −∇ph(w1))K

]

.
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Next, using the Galerkin orthogonality in each element K we get (∇ph(u),∇pM
e (w1) −

∇ph(w1))K = 0, and then from Lemmas 8 and 12 we arrive at

Bh((u1,h − u, p0,h − p), (w1, t0)) = Fh(w1, t0) − F(w1, t0) − B((u − u1, p− p0), (w1, t0))

+
∑

K∈TH

σ (∇pM
e (u) −∇ph(u),∇pM

e (w1))K

=
∑

K∈TH

[

(∇pg
e −∇pg

h,w1)K + σ (∇pM
e (u) −∇ph(u),∇pM

e (w1))K

]

− B((u − u1, p− p0), (w1, t0))

≤
∑

K∈TH

[

|pg
e − pg

h|1,K‖w1‖0,K + σ |pM
e (u) − ph(u)|1,K |pM

e (w1)|1,K

]

+ C σH |u|1,Ω‖w1‖0,Ω

≤
∑

K∈TH

C
[

σ−1h |pg
e|2,K‖w1‖0,K + σ h |pM

e (u)|2,K‖w1‖0,K

]

+ C σH |u|1,Ω‖w1‖0,Ω

≤ C

(

hH t

√
σ

|g|t,Ω +
√
σ (H + h) |u|1,Ω

)

,

and the result follows. �

5. Numerical Experiments

Now, we are interested in the numerical validation of the fully discrete method (69). The

validations are performed trough three series of numerical tests. The first two experiments

aim to compare the solution provided by (69) with available analytical solutions. For both

tests the local mass conservation feature is verified and an analysis of sensitivity with respect

to αF is performed. Finally, the robustness of the method to face out of the scope problems

is assessed in the final test by solving the so-called five-spot benchmark.

5.1. Analytical solution: first study. The domain is Ω = (0, 1) × (0, 1) for the first test

and for all remaining tests as well. Moreover, we set σ = 1 and set the exact pressure equals to

p(x, y) = cos(2πx) cos(2πy), u = −∇p and thus b = 0 and g = ∇·u = 8π2 cos(2πx) cos(2πy).

In Figure 2 we report the errors on velocity and pressure in a sequence of structured meshes

using αF = 0.1, and observe optimal convergence of all quantities asH → 0 in their respective

natural norms, which is in accordance with the theoretical results. For all the examples, we

use the notation

‖Jp0K‖J =

{

∑

F∈EH

HF ‖Jp0K‖2
0,F

}
1

2

.
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Figure 2. Example I: Convergence history for the velocity field and its di-

vergence (left) and the pressure and jump (right).

Furthermore, in Table 1 we study the local mass conservation feature for u1 + uD
e . For

that we define the quantity

Me := max
K∈TH

|
∫

K
(∇ · (u1 + uD

e ) − g)dx|
|K| ,(83)

and observe that we recover the local mass conservation property updating the linear velocity

field by the multiscale velocity uD
e .

Table 1. Example I: Relative local mass conservation error.

H 6.25 × 10−2 3.12 × 10−2 1.56 × 10−2 7.8 × 10−3 3.9 × 10−3

Me 1.40 × 10−12 1.29 × 10−12 3.59 × 10−12 6.87 × 10−12 7.02 × 10−11

Next, a study of sensitivity of the numerical error with respect to αF is performed in Table

2 for a fixed mesh, where we observe that the errors remain independent of the parameter

as long as αF stays of order 1. That agrees with the assumption that τF must be at order

HF , as predicted by the theory. We also perform a convergence study for all the variables

using different values for αF . The results are depicted in Figures 3 and 4 where we can see

that the errors are practically unaffected by the value of αF .

Our next objective is to perform a comparison of the performance of (69) with the lowest

order Raviart-Thomas’ mixed finite element method RT0/QH (cf. [26, 11]). The comparison

is performed in Figures 5-6. We can see from the results that clearly (69) is far more accurate

than the Raviart-Thomas method in the L2(Ω)2 norm of the velocity field, and, thanks to
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Table 2. Example I: The sensitivity of the errors with respect to αF .

αF ‖(u − u1, p− p0)‖H ‖u − u1‖0,Ω ‖∇ · u −∇ · u1‖0,Ω ‖p− p0‖0,Ω ‖Jp0K‖J

10−6 1.8380 0.012 1.826 0.023 0.056

10−4 1.8380 0.012 1.826 0.023 0.056

10−2 1.8380 0.012 1.826 0.023 0.056

0.1 1.8459 0.012 1.826 0.023 0.056

1 1.9220 0.013 1.830 0.023 0.056
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Figure 3. Example I: Convergence history for the velocity field (left) and its

divergence (right) for different values of αF .

the mass conservation property for u1 +uD
e , when the velocity field is updated with uD

e , the

errors in the divergence are identical. Both methods seem to perform equally good regarding

the errors in the pressure field. We want to stress the fact that the solution of (69) involves

less degrees of freedom than RT0/QH when the same mesh is used.

Finally, the unstructured mesh of Figure 7, containing approximately 5000 elements, is

adopted. The sensitivity of error in terms of parameter αF presents a different behavior

than before. Nevertheless, since there is a loss of stability when αF is small, the unexpected

robust error behavior when structured meshes are used is no longer preserved. The results

are reported in Table 3 where we observe that the individual norms are not independent of

αF , but the whole ‖ · ‖H norm of the error seems robust with respect to αF .

5.2. Second Analytical solution: a divergence-free velocity field. For the following

example we consider a divergence-free velocity field. More precisely, the problem is set up
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Figure 4. Example I: Convergence history for the pressure (left) and jump

(right) for different values of αF .
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Figure 5. Example I: Convergence history for the velocity (left) and its di-

vergence (right) for (69) and RT0/QH .

as in the first test, the exact pressure is now p(x, y) = x− x2 − 1/6 and the velocity field

u = (x2(1 − x)2(2y − 6y2 + 4y3),−y2(1 − y)2(2x− 6x2 + 4y3))t .

The source term is then

f = (x2(1 − x)2(2y − 6y2 + 4y3) + 1 − 2x,−y2(1 − y)2(2x− 6x2 + 4y3))t ,
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Figure 6. Example I: Convergence history for the pressure for (69) and RT0/QH .
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Figure 7. The unstructured mesh.

Table 3. Example I: The sensitivity of the errors with respect to αF using

an unstructured mesh.

αF ‖u − u1‖0,Ω ‖∇ · u −∇ · u1‖0,Ω ‖p− p0‖0,Ω ‖Jp0K‖J ‖(u − u1, p− p0)‖H

10−3 0.6099 1.6741 8.0277 17.6551 1.8843

10−2 0.3017 1.6771 1.8341 2.6921 1.7349

0.1 0.1389 1.6840 0.2585 0.4186 1.6968

1 0.0654 1.7011 0.0373 0.0821 1.7047

10 0.0366 1.8013 0.0228 0.0541 1.8112

and the boundary condition is b = 0. Since the source term f is no longer a constant

function in K, we must consider the enhancement of Mu
K(f), i.e., we must add the term
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∑

K∈TH
(Mu

K(−f), σv1)K to the right hand side. From the definition of the operator Mu
K

we rewrite the right hand side of the equation as

(f ,v1)Ω +
∑

K∈TH

(σuM
e (−f),v1)K = (f ,v1)Ω +

∑

K∈TH

(−f −∇pM
e (−f),v1)K

=
∑

K∈TH

(∇pM
e (f),v1)K ,

were pM
e (f) is solution of the local problem

−∆pM
e = −∇ · f in K, ∂np

M
e = f · n on ∂K .(84)

Now, considering the local problems and the conservation mass property, we have ∇·u1 +

∇ · uD
e = 0 at the element level, leading to

∇ · u1

∣

∣

∣

K
= − 1

|K|
∑

F∈∂K

αFHF

σ

∫

F

Jp0Kn · nF .(85)

Hence, we do not expect in general that the error for the divergence of the velocity field to

have a good behavior with respect to the parameter αF and we expect a small variation in

the norm H since the diverge of the velocity field becomes more important as the parameter

αF is of order one (see Table 5 and Figures 9-10).

The results concerning the errors on velocity and pressure are depicted in Figure 8 using

αF = 0.1. In there we observe a H3/2 convergence for the velocity field in the H(div,Ω)

norm, which is higher than the expected rate of convergence given by the analysis. This is a

good thing when we compare to the Raviart-Thomas method, in which the discrete velocity

field is exactly divergence-free. Of course, when updated with the enrichment function uD
e ,

then the velocity field becomes exactly divergence-free (see Table 4 for the mass-conservation

results). The sensitivity of the error with respect to αF is performed in Table 5, and as before,

we study the convergence of the method for different choices of αF and we report the results

in Figures 9 and 10 where we observe that the errors in divergence are affected by the value

of αF , while the rest seem fairly independent of αF .

Table 4. Example II: Relative local mass conservation error.

H 6.25 × 10−2 3.12 × 10−2 1.56 × 10−2 7.8 × 10−3 3.9 × 10−3

Me 1.04 × 10−15 1.03 × 10−15 9.11 × 10−15 1.41 × 10−14 6.30 × 10−15

Now we perform a comparison of (69) with the lowest order Raviart-Thomas’ mixed

method RT0/QH where we get better precision for the velocity field, as before, and the

errors for the pressure seem very close as well. The results are depicted in Figure 11.
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Figure 8. Example II: Convergence history for the velocity field and its di-

vergence(left) and the pressure and jump (right).

Table 5. Example II: The sensitivity of errors with respect to αF .

αF ‖(u − u1, p− p0)‖H ‖u − u1‖0,Ω ‖∇ · u −∇ · u1‖0,Ω ‖p− p0‖0,Ω ‖Jp0K‖J

10−6 0.0090 5.7 × 10−5 4.6 × 10−9 0.003 0.006

10−4 0.0090 5.7 × 10−5 4.6 × 10−7 0.003 0.006

10−2 0.0090 5.7 × 10−5 4.6 × 10−5 0.003 0.006

0.1 0.0094 6 × 10−5 4.6 × 10−4 0.003 0.006

1 0.0013 1.9 × 10−4 4.6 × 10−3 0.003 0.006

5.3. The five-spot problem. Due to its practical importance in oil recovery, the quarter

five spot problem has served as a paradigm to validate stability and accuracy of numerical

methods for the Darcy model. This problem is now addressed considering zero source term

f and σ = 1 in a unit square domain, and instead of modeling injection and production

of well by a non-zero source term g, we consider a non-homogeneous boundary condition

for the velocity such that its normal component is equal to 1
4HF

at points (0, 0) and (1, 1).

This delta of Dirac is linearly approached on the edges sharing such points. The solution

obtained is depicted in Figures 12-15 where we observe the total absence of oscillations in

the solution. The constant αF is again fixed equal to 0.1. In Table 6 we study the local mass

conservation feature regarding the enhanced method, as soon u1 is updated by u1 + ue.
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Figure 9. Example II: Convergence history for the velocity field (left) and

its divergence (right) for different values of αF .
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Figure 10. Example II: Convergence history for the pressure (left) and jump

(right) for different values of αF .

Table 6. Five spot problem: Relative local mass conservation error

h 6.25 × 10−2 3.12 × 10−2 1.56 × 10−2 7.8 × 10−3 3.9 × 10−3

Me 4.11 × 10−12 2.3 × 10−12 7.29 × 10−12 1.34 × 10−11 1.32 × 10−9

6. conclusion

To adopt the original operator along with boundary conditions built on imposing conti-

nuity for the pressure and the flux appears as the correct form to model unsolved scales in
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Figure 11. Example II: Convergence history for the velocity (left) and for

the pressure (right) for (69) and RT0/Q
0
H .
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Figure 12. Five spot problem: Profile of pressure.

terms of resolved ones, which means, to recover stability and optimality through the Petrov-

Galerkin augmenting space approach. In addition, by incorporating such unsolved scales

into the finite element method all the desired features of the original spaces, such as local

mass conservation and nodal values for the velocity, are still preserved. When it comes to

solve the local problems, the proposed method compromises accuracy with low computa-

tional cost. Thus, our method appears as a competitive alternative to tackle more complex

flows where analytical solutions are out of reach, such as oscillating coefficients. Higher order

pairs of interpolation spaces will also demand a the two-level approach, but in those cases,
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Figure 13. Five spot problem: Isovalues of the pressure.
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Figure 14. Five spot problem: The 2-norm of the velocity.

the boundary condition for the local problems ought to include further control on the gra-

dient of the pressure. Finally, enriched methods seem to show an intrinsic relationship with

some discontinuous finite element methods. This subject should be enrolled in forthcoming

works.
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