2,965 research outputs found

    Stochastic H ∞ Finite-Time Control of Discrete-Time Systems with Packet Loss

    Get PDF
    This paper investigates the stochastic finite-time stabilization and H ∞ control problem for one family of linear discrete-time systems over networks with packet loss, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov process, the class of discrete-time linear systems with packet loss can be regarded as Markovian jump systems. Based on Lyapunov function approach, sufficient conditions are established for the resulting closed-loop discrete-time system with Markovian jumps to be stochastic H ∞ finite-time boundedness and then state feedback controllers are designed to guarantee stochastic H ∞ finitetime stabilization of the class of stochastic systems. The stochastic H ∞ finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the class of linear systems with packet loss. Finally, simulation examples are presented to illustrate the validity of the developed scheme

    Stochastic ℋ

    Get PDF
    This paper investigates the stochastic finite-time stabilization and ℋ∞ control problem for one family of linear discrete-time systems over networks with packet loss, parametric uncertainties, and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov process, the class of discrete-time linear systems with packet loss can be regarded as Markovian jump systems. Based on Lyapunov function approach, sufficient conditions are established for the resulting closed-loop discrete-time system with Markovian jumps to be stochastic ℋ∞ finite-time boundedness and then state feedback controllers are designed to guarantee stochastic ℋ∞ finite-time stabilization of the class of stochastic systems. The stochastic ℋ∞ finite-time boundedness criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the class of linear systems with packet loss. Finally, simulation examples are presented to illustrate the validity of the developed scheme

    Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: A survey

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2012 Hindawi PublishingSome recent advances on the filtering and control problems for nonlinear stochastic complex systems with incomplete information are surveyed. The incomplete information under consideration mainly includes missing measurements, randomly varying sensor delays, signal quantization, sensor saturations, and signal sampling. With such incomplete information, the developments on various filtering and control issues are reviewed in great detail. In particular, the addressed nonlinear stochastic complex systems are so comprehensive that they include conventional nonlinear stochastic systems, different kinds of complex networks, and a large class of sensor networks. The corresponding filtering and control technologies for such nonlinear stochastic complex systems are then discussed. Subsequently, some latest results on the filtering and control problems for the complex systems with incomplete information are given. Finally, conclusions are drawn and several possible future research directions are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61104125, 61028008, 61174136, 60974030, and 61074129, the Qing Lan Project of Jiangsu Province of China, the Project sponsored by SRF for ROCS of SEM of China, the Engineering and Physical Sciences Research Council EPSRC of the UK under Grant GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Time-triggering versus event-triggering control over communication channels

    Full text link
    Time-triggered and event-triggered control strategies for stabilization of an unstable plant over a rate-limited communication channel subject to unknown, bounded delay are studied and compared. Event triggering carries implicit information, revealing the state of the plant. However, the delay in the communication channel causes information loss, as it makes the state information out of date. There is a critical delay value, when the loss of information due to the communication delay perfectly compensates the implicit information carried by the triggering events. This occurs when the maximum delay equals the inverse of the entropy rate of the plant. In this context, extensions of our previous results for event triggering strategies are presented for vector systems and are compared with the data-rate theorem for time-triggered control, that is extended here to a setting with unknown delay.Comment: To appear in the 56th IEEE Conference on Decision and Control (CDC), Melbourne, Australia. arXiv admin note: text overlap with arXiv:1609.0959

    Exploiting timing information in event-triggered stabilization of linear systems with disturbances

    Get PDF
    In the same way that subsequent pauses in spoken language are used to convey information, it is also possible to transmit information in communication networks not only by message content, but also with its timing. This paper presents an event-triggering strategy that utilizes timing information by transmitting in a state-dependent fashion. We consider the stabilization of a continuous-time, time-invariant, linear plant over a digital communication channel with bounded delay and subject to bounded plant disturbances and establish two main results. On the one hand, we design an encoding-decoding scheme that guarantees a sufficient information transmission rate for stabilization. On the other hand, we determine a lower bound on the information transmission rate necessary for stabilization by any control policy

    Optimal LQG Control Across a Packet-Dropping Link

    Get PDF
    We examine optimal Linear Quadratic Gaussian control for a system in which communication between the sensor (output of the plant) and the controller occurs across a packet-dropping link. We extend the familiar LQG separation principle to this problem that allows us to solve this problem using a standard LQR state-feedback design, along with an optimal algorithm for propagating and using the information across the unreliable link. We present one such optimal algorithm, which consists of a Kalman Filter at the sensor side of the link, and a switched linear filter at the controller side. Our design does not assume any statistical model of the packet drop events, and is thus optimal for an arbitrary packet drop pattern. Further, the solution is appealing from a practical point of view because it can be implemented as a small modification of an existing LQG control design

    On the effect of quantization on performance at high rates

    Get PDF
    We study the effect of quantization on the performance of a scalar dynamical system in the high rate regime. We evaluate the LQ cost for two commonly used quantizers: uniform and logarithmic and provide a lower bound on performance of any centroid-based quantizer based on entropy arguments. We also consider the case when the channel drops data packets stochastically

    A review on analysis and synthesis of nonlinear stochastic systems with randomly occurring incomplete information

    Get PDF
    Copyright q 2012 Hongli Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In the context of systems and control, incomplete information refers to a dynamical system in which knowledge about the system states is limited due to the difficulties in modeling complexity in a quantitative way. The well-known types of incomplete information include parameter uncertainties and norm-bounded nonlinearities. Recently, in response to the development of network technologies, the phenomenon of randomly occurring incomplete information has become more and more prevalent. Such a phenomenon typically appears in a networked environment. Examples include, but are not limited to, randomly occurring uncertainties, randomly occurring nonlinearities, randomly occurring saturation, randomly missing measurements and randomly occurring quantization. Randomly occurring incomplete information, if not properly handled, would seriously deteriorate the performance of a control system. In this paper, we aim to survey some recent advances on the analysis and synthesis problems for nonlinear stochastic systems with randomly occurring incomplete information. The developments of the filtering, control and fault detection problems are systematically reviewed. Latest results on analysis and synthesis of nonlinear stochastic systems are discussed in great detail. In addition, various distributed filtering technologies over sensor networks are highlighted. Finally, some concluding remarks are given and some possible future research directions are pointed out. © 2012 Hongli Dong et al.This work was supported in part by the National Natural Science Foundation of China under Grants 61273156, 61134009, 61273201, 61021002, and 61004067, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant GR/S27658/01, the Royal Society of the UK, the National Science Foundation of the USA under Grant No. HRD-1137732, and the Alexander von Humboldt Foundation of German
    corecore