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This paper investigates the stochastic finite-time stabilization and H∞ control problem for one
family of linear discrete-time systems over networks with packet loss, parametric uncertainties,
and time-varying norm-bounded disturbance. Firstly, the dynamic model description studied
is given, which, if the packet dropout is assumed to be a discrete-time homogenous Markov
process, the class of discrete-time linear systems with packet loss can be regarded as Markovian
jump systems. Based on Lyapunov function approach, sufficient conditions are established for the
resulting closed-loop discrete-time system with Markovian jumps to be stochastic H∞ finite-time
boundedness and then state feedback controllers are designed to guarantee stochastic H∞ finite-
time stabilization of the class of stochastic systems. The stochastic H∞ finite-time boundedness
criteria can be tackled in the form of linear matrix inequalities with a fixed parameter. As an
auxiliary result, we also give sufficient conditions on the robust stochastic stabilization of the
class of linear systems with packet loss. Finally, simulation examples are presented to illustrate
the validity of the developed scheme.

1. Introduction

Networked control systems (NCSs) are feedback control systems with control closed loops
via digital communication channel. Compared with traditional point-to-point controller
architectures, the advantages of NCSs include low cost, high reliability, less wiring, and easy
maintenance [1]. In recent years, NCSs have found successful applications in broad range
of modern scientific areas such as internet-based control, distributed communication, and
industrial automation [2]. However, the insertion of the communication channels creates
discrepancies between the data records to be transmitted and their associated remotely
transmitted images, which hence makes the traditional control theory confronts new
challenges. Among these challenges, random communication delay, data packet dropout,
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and signal quantization are known to be three main interesting problems for the stability
and performance degradation of the controlled networked system. In view of this, many
researchers have made to study how to design control systems by packet loss, delay, and
quantization, see [3–6] and the references cited therein. Among a number of issues arising
from such a framework, packet losses of NCSs are an important issue to be addressed and
have received great attention, see [7–15]. Meanwhile, Markovian jumps systems are regarded
to be as a special family of hybrid systems and stochastic systems, which are very appropriate
to model plants whose structure is subject to random abrupt changes, see [16–22] and
references therein.

It is well known that classical Lyapunov theory focuses mainly on the state con-
vergence property of the systems in infinite time interval, which, just as was mentioned
above, does not usually specify bounds on the trajectories in finite interval. However, the
main attention in many practical applications is the behavior of the dynamic systems over
a specified time interval, for instance, large values of the state are not acceptable in the
presence of saturations [23]. To discuss this transient performance of control dynamics, finite-
time stability or short-time stability was presented in [24]. Then, some appealing results
were found in [25–32]. However, to date and to the best of our knowledge, the problems of
stochastic finite-time stability and stabilization of network control systems with packet loss
have not fully investigated and still remain challenging, although results related to systems
over networks with packet loss are reported in the existing literature, see [6–15, 33–36].

Motivated by the above discussion, in this paper, we address the stochastic H∞
finite-time boundedness (SH∞FTB) problems for linear discrete-time systems over networks
with packet dropout, parametric uncertainties, and time-varying norm-bounded disturbance.
Firstly, we present dynamic model description studied, which, if the data packet loss is
assumed to be a time homogenous Markov process, the class of linear discrete-time systems
with packet loss can be referred as Markovian jump systems. Thus, the class of linear systems
investigated could be studied by the theoretical framework of Markov jumps systems.
Then, the concepts of stochastic finite-time stability, stochastic finite-time boundedness, and
SH∞FTB and problem formulation are given. The main contribution of this paper is to design
a state feedback controller which guarantees the resulting closed-loop discrete-time system
with Markovian jumps SH∞FTB. As an auxiliary result, we also give sufficient conditions on
the robust stochastic stabilization of the class of linear systems with packet loss. The SH∞FTB
criteria of the class of Markovian jump systems can be addressed in the form of linear matrix
inequalities (LMIs) with a fixed parameter.

The rest of this paper is organized as follows. Section 2 is devoted to the dynamic
model description and problem formulation. The results on the SH∞FTB are presented in
Section 3. Section 4 presents numerical examples to demonstrate the validity of the proposed
methodology. Finally, in Section 5, the conclusions are given.

Notation 1. The notation used throughout the paper is fairly standard, R
n, R

n×m, and Zk≥0
denote the sets of n component real vectors, n × m real matrices, and the set of nonnegative
integers, respectively. The superscript T stands for matrix transposition or vector, and E{·}
denotes the expectation operator with respective to some probability measure P. In addition,
the symbol ∗ denotes the transposed elements in the symmetric positions of a matrix, and
diag{· · · } stands for a block-diagonal matrix. λmin(P) and λmax(P) denote the smallest and
the largest eigenvalue of matrix P , respectively. Notations sup and inf denote the supremum
and infimum, respectively. Matrices, if their dimensions are not explicitly stated, are assumed
to be compatible for algebraic operations.
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2. Problem Formulation and Preliminaries

Let us consider a linear discrete-time system (LDS) as follows:

x(k + 1) = [A + ΔA(k)]x(k) + [B + ΔB(k)]u(k) +Gw(k),

z(k) = Cx(k) +D1u(k) +D2w(k),
(2.1)

where x(k) ∈ R
n is the state, z(k) ∈ R

l1 is the measure output, and u(k) ∈ R
m is the control

input. The noise signal w(k) ∈ R
l2 satisfies

∞∑

k=0

wT(k)w(k) < d2, d > 0. (2.2)

The matrices ΔA(k) and ΔB(k) are uncertain matrices and satisfy

[ΔA(k),ΔB(k)] = FΔ(k)[E1, E2], (2.3)

where Δ(k) is an unknown, time-varying matrix function, and satisfies

ΔT (k)Δ(k) ≤ I, ∀k ∈ Zk≥0. (2.4)

Due to the existence of the packet dropout of the communication during the
transmission, the packet dropout process of the network can be regarded as a time-
homogenous Markov process {γ(k), k ≥ 0}. Let γ(k) = 1 mean that the packet has been
successfully delivered to the decoder, while γ(k) = 0 corresponds to the dropout of the packet.
The Markov chain has a transition probability matrix defined by

P{γ(k + 1) = j | γ(k) = i
}
=
[
1 − q q
p 1 − p

]
, (2.5)

where i, j ∈ W � {0, 1} are the state of the Markov chain. Without loss of generality, let
γ(0) = 1 and the failure rate p and the recovery rate q of the channel satisfy p, q ∈ (0, 1). It is
worth noting that a smaller value of p and a larger value of q indicate a more reliable channel.

Remark 2.1. When the above transition probability matrix is
[
p 1−p
p 1−p

]
with 0 ≤ p ≤ 1, the above

two-state Markov process is reduced to a Bernoulli process [37].
Consider the control law for the LDS (2.1) in the form

u(k) = γ(k)Lx(k), (2.6)
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where L is to be designed the control gain matrix. {γ(k), k ≥ 0} is a Markov packet dropout
process satisfying (2.5). Then, the resulting closed-loop LDS follows that

x(k + 1) =
[
A + γ(k)BL

]
x(k) +Gw(k),

z(k) =
[
C + γ(k)D1L

]
x(k) +D2w(k),

(2.7)

where A = A + ΔA(k) and B = B + ΔB(k).
Now, we define two models according to the value of γ(k). If γ(k) = 1, we define the

Model 1 at time k + 1 as follows:

x(k + 1) =
(
A + BLζ

)
x(k) +Gw(k),

z(k) =
(
C +D1Lζ

)
x(k) +D2w(k).

(2.8)

If γ(k) = 0, we define the Model 2 at time k + 1 as follows:

x(k + 1) = Ax(k) +Gw(k),

z(k) = Cx(k) +D2w(k),
(2.9)

where the selection of Lζ in (2.7) is according to the model of x(k) for all ζ ∈ {1, 0}, that is
to say, if x(k) is at Model 1, which is γ(k − 1) = 1, Lζ = L1, otherwise, if x(k) is at Model 2,
which is γ(k − 1) = 0, Lζ = L0.

Then, (2.7) can be regarded as a closed-loop LDS with Markovian jumps described by

x(k + 1) = �(1)
[(

A + BLζ

)
x(k) +Gw(k)

]
+ �(2)

[
Ax(k) +Gw(k)

]
,

z(k) = �(1)
[(
C +D1Lζ

)
x(k) +D2w(k)

]
+ �(2)[Cx(k) +D2w(k)],

(2.10)

where �(a), a ∈ {1, 2} denotes the mode indicator function. �(1) corresponds to a mode with
feedback, and �(2) corresponds to a mode without feedback. It is noted that it yields �(a) = 1
when at time k + 1 be a ∈ {1, 2} and �(b) = 0 for b /=a. The mode transition probabilities of
Markovian jump LDS (2.10) is given by

P{ηv(k + 1) = v | ηu(k) = u
}
= πuv, (2.11)

where πuv ≥ 0 for all u, v ∈ {1, 2} and
∑2

v=1 πuv = 1. ηv(k) = 1 implies �(1) = 1, �(2) = 0,
which the communication transmission succeeds, and ηv(k) = 2 implies �(1) = 0, �(2) = 1,
which the communication dropout occurs. Thus, compared to (2.5), it follows that π11 =
1 − p, π12 = p, π21 = q, π22 = 1 − q.
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Definition 2.2 (stochastic finite-time stability (SFTS)). The closed-loop Markovian jump LDS
with w(k) = 0 (2.10) is said to be SFTS with respect to (δx, ε, R,N), where 0 < δx < ε, R is a
symmetric positive-definite matrix and N ∈ Zk≥0, if

E
{
xT (0)Rx(0)

}
≤ δ2

x =⇒ E
{
xT (k)Rx(k)

}
< ε2, ∀k ∈ {1, 2, . . . ,N}. (2.12)

Definition 2.3 (stochastic finite-time boundedness (SFTB)). The closed-loop LDS with
Markovian jumps (2.10) is said to be SFTB with respect to (δx, ε, R,N, d), where 0 < δx < ε,
R is a symmetric positive-definite matrix and N ∈ Zk≥0, if the relation condition (2.12)
holds.

Definition 2.4 (stochasticH∞ finite-time boundedness (SH∞FTB)). The closed-loop LDSwith
Markovian jumps (2.10) is said to be SH∞FTB with respect to (δx, ε, γ, R,N, d), where 0 <
δx < ε, R is a symmetric positive-definite matrix and N ∈ Zk≥0, if the closed-loop LDS with
Markovian jumps (2.10) is SFTB with respect to (δx, ε, R,N, d) and under the zero-initial
condition the output z(k) satisfies

E

⎧
⎨

⎩

N∑

j=0

zT
(
j
)
z
(
j
)
⎫
⎬

⎭ < γ2
N∑

j=0

wT(j
)
w
(
j
)

(2.13)

for any nonzero w(k)which satisfies (2.2), where γ is a prescribed positive scalar.

Lemma 2.5 (see [38]). The linear matrix inequality
[
X11 ∗
X21 X22

]
< 0 is equivalent to X22 < 0 and

X11 −XT
21X

−1
22X21 < 0, where X11 = XT

11 and X22 = XT
22.

Lemma 2.6 (see [38]). For matrices X,Y , and Z of appropriate dimensions, where X is a symmetric
matrix, then X + YF(t)Z + [YF(t)Z]T < 0 holds for all matrix F(t) satisfying FT (t)F(t) ≤ I for all
t ∈ R, if and only if there exists a positive constant 	, such that the inequalityX+	YYT +	−1ZTZ < 0
holds.

In this paper, the feedback gain matrices L1 and L0 with Markov packet dropout of
failure rate p and recovery rate q will be designed to guarantee the states of the closed-loop
Markovian jump LDS (2.10) SH∞FTB.

3. Main Results

In this section, for the given failure rate p and recovery rate qwith p, q ∈ (0, 1), we will design
a state feedback controller that assures SH∞FTB of the Markovian jump LDS (2.10).

Theorem 3.1. For the given failure rate p and recovery rate q with p, q ∈ (0, 1), the closed-loop
Markovian jump LDS (2.10) is SFTB with respect to (δx, ε, R,N, d), if there exist scalars μ ≥ 1,
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γ > 0, two symmetric positive-definite matrices P1, P2, and a set of feedback control matrices {Lζ, ζ ∈
{1, 0}}, such that the following inequalities hold:

⎡
⎢⎢⎢⎢⎢⎢⎣

−μP1 ∗ ∗ ∗
0 −γ2μ−NI ∗ ∗

A + BL1 G − 1
1 − p

P−1
1 ∗

A G 0 −1
p
P−1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (3.1)

⎡
⎢⎢⎢⎢⎢⎢⎣

−μP2 ∗ ∗ ∗
0 −γ2μ−NI ∗ ∗

A + BL0 G −1
q
P−1
1 ∗

A G 0 − 1
1 − q

P−1
2

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0, (3.2)

sup
a∈{1,2}

{
λmax

(
P̃a

)}
μNδ2

x + γ2d2 < inf
a∈{1,2}

{
λmin

(
P̃a

)}
ε2, (3.3)

where P̃a = R−1/2PaR
−1/2 for all a ∈ {1, 2}.

Proof. Assume the mode at time k be a ∈ {1, 2}. Taking into account that if a = 1, then we
have γ(k − 1) = 1 and Lζ = L1, otherwise if a = 2, then γ(k − 1) = 0 and Lζ = L0. Consider the
following Lyapunov-Krasovskii functional candidate for the Markov jump LDS (2.10):

V
(
x(k), ηv(k) = a

)
= xT (k)Pax(k). (3.4)

Then, we have

E{V (k + 1)} = E

{
2∑

v=1

P{ηv(k + 1) = v | ηv(k) = a
} × xT (k + 1)Pvx(k + 1)

}

= πa1

[(
A + BLζ

)
x(k) +Gw(k)

]T
P1

[(
A + BLζ

)
x(k) +Gw(k)

]

+ πa2

[
Ax(k) +Gw(k)

]T
P2

[
Ax(k) +Gw(k)

]
.

(3.5)

Denote

Θ(x(k), w(k), a) � E{V (k + 1)} − μV (k) − γ2μ−NwT (k)w(k). (3.6)
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Taking into account that if a = 1, then Lζ = L1, otherwise a = 2, then Lζ = L0. Noting that
π11 = 1 − p, π12 = p, π21 = q, π22 = 1 − q. Thus, when a = 1, it follows that

Θ(x(k), w(k), 1) =
(
1 − p

)[(
A + BL1

)
x(k) +Gw(k)

]T
P1

[(
A + BL1

)
x(k) +Gw(k)

]

+ p
[
Ax(k) +Gw(k)

]T
P2

[
Ax(k) +Gw(k)

]

− μxT (k)P1x(k) − γ2μ−NwT (k)w(k)

=
[
x(k)
w(k)

]T{
ΦT

1

[(
1 − p

)
P1 ∗

0 pP2

]
Φ1 −

[
μP1 ∗
0 γ2μ−NI

]}[
x(k)
w(k)

]
,

(3.7)

where

Φ1 =

[
A + BL1 G

A G

]
. (3.8)

By Lemma 2.5, it follows from (3.1) and (3.7) that

Θ(x(k), w(k), 1) < 0. (3.9)

When a = 2, taking into account condition (3.2), the similar to (3.9), we can derive the
following inequality:

Θ(x(k), w(k), 2) < 0. (3.10)

Thus, for all a ∈ {1, 2}, we have

Θ(x(k), w(k), a) < 0. (3.11)

That is to say, for all a ∈ {1, 2}, it follows that

E{V (k + 1)} < μV (k) + γ2μ−NwT (k)w(k). (3.12)

By (3.12), it is obvious that

E{V (k + 1)} < μE{V (k)} + γ2μ−NwT(k)w(k). (3.13)

From (2.2) and (3.13) and noting that μ ≥ 1, we have

E{V (k)} < μkE{V (0)} + γ2μ−N
k−1∑

j=0

μk−j−1wT(j
)
w
(
j
)

≤ μkE{V (0)} + γ2μ−Nμkd2.

(3.14)
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Let P̃a = R−1/2PaR
−1/2 and noting that E{xT (0)Rx(0)} ≤ δ2

x, we have

E{V (0)} = E
{
xT (0)Pax(0)

}

= E
{
xT (0)R1/2P̃aR

1/2x(0)
}

≤ sup
a∈{1,2}

{
λmax

(
P̃a

)}
E
{
xT (0)Rx(0)

}

≤ sup
a∈{1,2}

{
λmax

(
P̃a

)}
δ2
x.

(3.15)

On the other hand, for all a ∈ {1, 2}, we have

E{V (k)} = E
{
xT (k)Pax(k)

}

= E
{
xT (k)R1/2P̃aR

1/2x(k)
}

≥ inf
a∈{1,2}

{
λmin

(
P̃a

)}
E
{
xT (k)Rx(k)

}
.

(3.16)

Combing with (3.14)–(3.16), we can derive

E
{
xT (k)Rx(k)

}
<

supa∈{1,2}
{
λmax

(
P̃a

)}
μkδ2

x + γ2μ−Nμkd2

infa∈{1,2}
{
λmin

(
P̃a

)} . (3.17)

Noting condition (3.3), it is obvious that E{xT (k)Rx(k)} < ε2 for all k ∈ {1, 2, . . . ,N}. This
completes the proof of this theorem.

Theorem 3.2. For the given failure rate p and recovery rate q with p, q ∈ (0, 1), the closed-loop
Markovian jump LDS (2.10) is SH∞FTB with respect to (δx, ε, γ, R,N, d), if there exist scalars
μ ≥ 1, γ > 0, two symmetric positive-definite matrices P1, P2, and a set of feedback control matrices
{Lζ, ζ ∈ {1, 0}}, such that (3.3) and the following inequalities hold:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μP1 ∗ ∗ ∗ ∗
0 −γ2μ−NI ∗ ∗ ∗

A + BL1 G − 1
1 − p

P−1
1 ∗ ∗

A G 0 −1
p
P−1
2 ∗

C +D1L1 D2 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.18)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μP2 ∗ ∗ ∗ ∗
0 −γ2μ−NI ∗ ∗ ∗

A + BL0 G −1
q
P−1
1 ∗ ∗

A G 0 − 1
1 − q

P−1
2 ∗

C D2 0 0 0 −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.19)

where P̃a = R−1/2PaR
−1/2 for all a ∈ {1, 2}.
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Proof. Noting that

Υ1 �
[
(C +D1L1)T (C +D1L1) ∗

DT
2 (C +D1L1) DT

2D2

]

=

[
(C +D1L1)T

DT
2

]
[
C +D1L1 D2

] ≥ 0,

(3.20)

Υ2 �
[
CTC ∗
DT

2C DT
2D2

]
=
[
CT

DT
2

][
C D2

] ≥ 0. (3.21)

Applying Lemma 2.5, it follows from (3.18) and (3.19) that conditions (3.1) and (3.2) hold.
Therefore, the Morkovian jump LDS (2.10) is stochastic finite-time boundedness according to
Theorem 3.1.

Then, we only need to prove (2.13) satisfied under zero-value initial condition. Let us
assume the mode at time k be a ∈ {1, 2}. Taking into account that if a = 1, then we have
γ(k − 1) = 1 and Lζ = L1, otherwise if a = 2, then γ(k − 1) = 0 and Lζ = L0. Let us choose
V (x(k), ηv(k) = a) = xT (k)Pax(k) for the Markovian jump LDS (2.10). We denote

Λ(x(k), w(k), a) � E{V (k + 1)} − μV (k) + zT (k)z(k) − γ2μ−NwT(k)w(k). (3.22)

Thus, when a = 1, we have

Λ(x(k), w(k), 1)

=
(
1 − p

)[(
A + BL1

)
x(k) +Gw(k)

]T
P1

[(
A + BL1

)
x(k) +Gw(k)

]

+ p
[
Ax(k) +Gw(k)

]T
P2

[
Ax(k) +Gw(k)

]

+ [(C +D1L1)x(k) +D2w(k)]T [(C +D1L1)x(k) +D2w(k)]

− μxT (k)P1x(k) − γ2μ−NwT (k)w(k)

=
[
x(k)
w(k)

]T{
ΦT

1

[(
1 − p

)
P1 ∗

0 pP2

]
Φ1 −

[
μP1 ∗
0 γ2μ−NI

]
+ Υ1

}[
x(k)
w(k)

]
,

(3.23)

where Φ1,Υ1 are the same as the above. Thus, according to Lemma 2.5, we can obtain from
(3.18) and (3.23)

Λ(x(k), w(k), 1) < 0. (3.24)

When a = 2, taking into account condition (3.19) and (3.21), the similar to the above deduc-
tion, we can derive that the following inequality holds:

Λ(x(k), w(k), 2) < 0. (3.25)
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Thus, for all a ∈ {1, 2}, we can obtain

Λ(x(k), w(k), a) = E{V (k + 1)} − μV (k) + zT (k)z(k) − γ2μ−NwT (k)w(k) < 0. (3.26)

According to (3.26), it is obvious that

E{V (k + 1)} < μE{V (k)} − E
{
zT (k)z(k)

}
+ γ2μ−NwT (k)w(k). (3.27)

From (3.27), we have

E{V (k)} < μkE{V (0)} −
k−1∑

j=0

μk−j−1E
{
zT
(
j
)
z
(
j
)}

+ γ2μ−N
k−1∑

j=0

μk−j−1wT(j
)
w
(
j
)
. (3.28)

Under the zero-value initial condition and noting that V (k) ≥ 0 for all k ∈ Zk≥0, we have

k−1∑

j=0

μk−j−1E
{
zT
(
j
)
z
(
j
)}

< γ2μ−N
k−1∑

j=0

μk−j−1wT(j
)
w
(
j
)
. (3.29)

From (3.29) and noting that μ ≥ 1, we have

E

⎧
⎨

⎩

N∑

j=0

zT
(
j
)
z
(
j
)
⎫
⎬

⎭ =
N∑

j=0

E
{
zT
(
j
)
z
(
j
)} ≤

N∑

j=0

E
{
μN−jzT

(
j
)
z
(
j
)}

< γ2μ−N
N∑

j=0

μN−jwT(j
)
w
(
j
) ≤ γ2

N∑

j=0

wT(j
)
w
(
j
)
.

(3.30)

Thus, this completes the proof of the theorem.

Denoting X1 = P−1
1 , X2 = P−1

2 , L1 = Y1X
−1
1 , L0 = Y0X

−1
2 and applying Lemmas 2.5 and

2.6, one can obtain from Theorem 3.2 the following results on the stochastic H∞ finite-time
stabilization.

Theorem 3.3. For the given failure rate p and recovery rate q with p, q ∈ (0, 1), there exists a state
feedback controller u(t) = Lζx(t), ζ ∈ {1, 0} with L1 = Y1X

−1
1 and L0 = Y0X

−1
2 such that the closed-

loop Markovian jump LDS (2.10) is SH∞FTB with respect to (δx, ε, γ, R,N, d), if there exist scalars
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μ ≥ 1, γ > 0, ε1 > 0, ε2 > 0, two symmetric positive-definite matrices X1, X2, and a set of feedback
control matrices {Lζ, ζ ∈ {1, 0}}, such that the following inequalities hold:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μX1 ∗ ∗ ∗ ∗ ∗ ∗
0 −γ2μ−NI ∗ ∗ ∗ ∗ ∗

AX1 + BY1 G − 1
1 − p

X1 + ε1FF
T ∗ ∗ ∗ ∗

AX1 G 0 −1
p
X2 + ε1FF

T ∗ ∗ ∗
CX1 +D1Y1 D2 0 0 −I ∗ ∗
E1X1 + E2Y1 0 0 0 0 −ε1I ∗

E1X1 0 0 0 0 0 −ε1I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.31)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μX2 ∗ ∗ ∗ ∗ ∗ ∗
0 −γ2μ−NI ∗ ∗ ∗ ∗ ∗

AX2 + BY0 G −1
q
X1 + ε2FF

T ∗ ∗ ∗ ∗

AX2 G 0 − 1
1 − q

X2 + ε2FF
T ∗ ∗ ∗

CX2 D2 0 0 −I ∗ ∗
E1X2 + E2Y0 0 0 0 0 −ε2I ∗

E1X2 0 0 0 0 0 −ε2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.32)

sup
a∈{1,2}

{
λmax

(
X̃a

)}
μNδ2

x + γ2d2 < inf
a∈{1,2}

{
λmin

(
X̃a

)}
ε2, (3.33)

where X̃a = R−1/2X−1
a R−1/2 for all a ∈ {1, 2}.

Remark 3.4. It is easy to check that condition (3.33) is guaranteed by imposing the conditions
for all a ∈ {1, 2}:

λR−1 < Xa < R−1,
[
μ−N(γ2d2 − ε2

) ∗
δx −λ

]
< 0. (3.34)

It follows that conditions (3.31), (3.32), and (3.34) are not strict LMIs; however, once we fix
the parameter μ, the conditions can be turned into LMI-based feasibility problem:

Remark 3.5. From the above discussion, we can obtain that the feasibility of conditions stated
in Theorem 3.3 can be turned into the following LMIs based feasibility problem

min
(
γ2 + ε2

)

X1, X2, Y1, Y0, ε1, ε2, λ

s.t. LMIs (3.31), (3.32), and (3.34)

(3.35)

with a fixed parameter μ. Furthermore, we can also find the parameter μ by an unconstrained
nonlinear optimization approach, which a locally convergent solution can be obtained by
using the program fminsearch in the optimization toolbox of Matlab.
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Remark 3.6. If we can find feasible solution with the parameter μ = 1, by the above discussion,
we can obtain that the designed controller can ensure both stochastic finite-time boundedness
and robust stochastic stabilization of the family of network control systems.

4. Numerical Examples

In this section, we present two examples to illustrate the proposed methods.

Example 4.1. Consider a Morkovian jump LDS (2.10)with parameters as

A =
[
1.5 0
0.2 0.5

]
, B =

[
1 0
0 1

]
, G =

[
1 2
0 1

]
,

C =
[
1 1
0.5 1

]
, D1 =

[
1 1
1 1

]
, D2 =

[
1 0.5
0 3

]
,

F =
[
0.1 0.1
0.2 0

]
, E1 =

[
0.3 0
0 0.4

]
, E2 =

[
0.4 0
0.5 0.2

]
,

(4.1)

and d = 1, Δ(k) = diag{Δ1(k),Δ2(k)}, where Δi(k) satisfies |Δi(k)| ≤ 1 for all i ∈ {1, 2} and
k ∈ Zk≥0. Moreover, we assume the failure rate p = 0.3 and the recovery rate q = 0.6.

Then, we chose R = I3, δx = 1, N = 5, and μ = 1.8, Theorem 3.3 yields to γ = 27.1939,
ε = 28.7912, and

X1 =
[
0.3069 0.2090
0.2090 0.8775

]
, X2 =

[
0.2612 −0.1408
−0.1408 0.6357

]
,

Y1 =
[−0.5248 −0.4726
−0.0747 −0.6270

]
, Y 0 =

[−0.4255 0.0877
0.0762 −0.4695

]
,

ε1 = 1.6732, ε2 = 0.6003, λ = 0.2127.

(4.2)

Thus, we can obtain the following state feedback controller gains

L1 =
[−1.6031 −0.1567
0.2903 −0.7837

]
, L0 =

[−1.7652 −0.2529
−0.1206 −0.7653

]
. (4.3)

Furthermore, let R = I3, δx = 1, and N = 5, by Theorem 3.3, the optimal bound with
minimum value of γ2 + ε2 relies on the parameter μ. We can find feasible solution when
1.12 ≤ μ ≤ 34.13. Figures 1 and 2 show the optimal value with different value of μ. Then, by
using the program fminsearch in the optimization toolbox of Matlab starting at μ = 1.8, the
locally convergent solution can be derived as

L1 =
[−1.5669 −0.1166
0.3827 −0.8124

]
, L0 =

[−1.6611 −0.1668
0.0456 −0.7598

]
, (4.4)

with μ = 1.5694 and the optimal value γ = 26.2353 and ε = 27.4932.
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Figure 1: The local optimal bound of γ .
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Figure 2: The local optimal bound of ε.

Example 4.2. Consider a Morkovian jump LDS (2.10)with

A =
[
0.5 0
0.5 0.8

]
, B =

[
1 0
2 1

]
, (4.5)

and the failure rate p = 0.3 and the recovery rate q = 0.9. In addition, the other matrices
parameters are the same as Example 4.1.

Then, let R = I3 and δx = 1, by Theorem 3.3, we can find feasible solution when μ = 1.
Furthermore, when μ = 1, it yields the optimal value γ = 4.7057 and ε = 5.0791 and the
following optimized state feedback controller gains:

L1 =
[−0.3412 −0.0380
−0.4900 −1.1045

]
, L0 =

[−0.5649 −0.0685
0.6100 −0.7019

]
. (4.6)

Thus, the above LDS with Morkovian jumps is stochastically stable and the calculated mini-
mum H∞ performance γ satisfies ‖Twz‖ < 4.7057.
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5. Conclusions

This paper addresses the SH∞FTB control problems for one family of linear discrete-time
systems over networks with packet dropout. Under assuming packet loss being a time
homogenous Markov process, the class of linear discrete-time systems can be regarded
as Markovian jump systems. Sufficient conditions are given for the resulting closed-loop
linear discrete-time Markovian jump system to be SH∞FTB, and state feedback controllers
are designed to guarantee SH∞FTB of the class of linear systems with Markov jumps.
The SH∞FTB criteria can be tackled in the form of linear matrix inequalities with a fixed
parameter. As an auxiliary result, we also give sufficient conditions on the robust stochastic
stabilization of the class of linear discrete-time systems with data packet dropout. Finally,
simulation results are also given to show the validity of the proposed approaches.
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