1,586 research outputs found

    Stabilization of Galerkin Finite Element Approximations to Transient Convection-Diffusion Problems

    Get PDF
    A postprocessing technique to improve Galerkin finite element approximations to linear evolutionary convection-reaction-diffusion equations is considered. A steady convection-reactiondiffusion problem with data based on the computed standard Galerkin approximation is solved at any fixed time. The postprocessing approximation is obtained using the SUPG method over the same Galerkin finite element space. Error bounds for the method are obtained in the convectiondominated regime. The numerical experiments we present show a substantial reduction of spurious oscillations achieved by means of this procedure.Ministerio de Educación y Ciencia MTM2007-6052

    Robust error estimates in weak norms for advection dominated transport problems with rough data

    Get PDF
    We consider mixing problems in the form of transient convection--diffusion equations with a velocity vector field with multiscale character and rough data. We assume that the velocity field has two scales, a coarse scale with slow spatial variation, which is responsible for advective transport and a fine scale with small amplitude that contributes to the mixing. For this problem we consider the estimation of filtered error quantities for solutions computed using a finite element method with symmetric stabilization. A posteriori error estimates and a priori error estimates are derived using the multiscale decomposition of the advective velocity to improve stability. All estimates are independent both of the P\'eclet number and of the regularity of the exact solution

    Maximum-principle preserving space-time isogeometric analysis

    Get PDF
    In this work we propose a nonlinear stabilization technique for convection-diffusion-reaction and pure transport problems discretized with space-time isogeometric analysis. The stabilization is based on a graph-theoretic artificial diffusion operator and a novel shock detector for isogeometric analysis. Stabilization in time and space directions are performed similarly, which allow us to use high-order discretizations in time without any CFL-like condition. The method is proven to yield solutions that satisfy the discrete maximum principle (DMP) unconditionally for arbitrary order. In addition, the stabilization is linearity preserving in a space-time sense. Moreover, the scheme is proven to be Lipschitz continuous ensuring that the nonlinear problem is well-posed. Solving large problems using a space-time discretization can become highly costly. Therefore, we also propose a partitioned space-time scheme that allows us to select the length of every time slab, and solve sequentially for every subdomain. As a result, the computational cost is reduced while the stability and convergence properties of the scheme remain unaltered. In addition, we propose a twice differentiable version of the stabilization scheme, which enjoys the same stability properties while the nonlinear convergence is significantly improved. Finally, the proposed schemes are assessed with numerical experiments. In particular, we considered steady and transient pure convection and convection-diffusion problems in one and two dimensions
    • …
    corecore