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Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstem-
ming met de TU/e Gedragscode Wetenschapsbeoefening.



A mis padres Mónico y Maŕıa Elena
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Abstract

Partial differential equations having diffusive, convective and reactive terms appear
naturally in the modeling of a large variety of processes of practical interest in sev-
eral branches of science such as biology, chemistry, economics, physics, physiology
and materials science. Moreover, in some instances several species or components
interact with each other requiring to solve strongly coupled systems of convection-
diffusion-reaction equations. Of special interest for us is the numerical treatment of
the advection dominated continuum dislocation transport equations used to describe
the plastic behavior of crystalline materials.

Analytical solutions for such equations are extremely scarce and practically limited
to linear equations with homogeneous coefficients and simple initial and boundary
conditions. Therefore, resorting to numerical approximations is the most affordable
and often the only viable strategy to deal with such models. However, when classical
numerical methods are used to approximate the solutions of such equations, even in
the simplest one dimensional case in the steady state regime for a single equation,
instabilities in the form of node to node spurious oscillations are found when the
convective or reactive terms dominate over the diffusive term.

To address such issues, stabilization techniques have been developed over the years in
order to handle such transport equations by numerical means, overcoming the stability
difficulties. However, such stabilization techniques are most often suited for particular
problems. Additionally, no extensive work has been carried out for systems of coupled
equations. The reason for this immaturity is the lack of a maximum principle when
going from a single transport equation towards systems of coupled equations.

The main aim of this work is to present a stabilization technique for systems of
coupled multidimensional convection-diffusion-reaction equations based on coefficient
perturbations. These perturbations are optimally chosen in such a way that certain
compatibility conditions analogous to a maximum principle are satisfied. Once the
computed perturbations are injected in the classical Bubnov-Galerkin finite element
method, they provide smooth and stable numerical approximations.

Such a stabilization technique is first developed for the single one-dimensional
convection-diffusion-reaction equation. Rigorous proof of its effectiveness in rendering
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vi Abstract

unconditionally stable numerical approximations with respect to the space discretiza-
tion is provided for the convection-diffusion case via the fulfillment of the discrete
maximum principle. It is also demonstrated and confirmed by numerical assessments
that the stabilized solution is consistent with the discretized partial differential equa-
tion, since it converges to the classical Bubnov-Galerkin solution if the mesh Péclet
number is small enough. The corresponding proofs for the diffusion-reaction and the
general convection-diffusion-reaction cases can be obtained in a similar manner. Fur-
thermore, it is demonstrated that this stabilization technique is applicable irrespective
of whether the advective or the divergence form is used for the spatial discretization,
making it highly flexible and general. Subsequently the stabilization technique is
extended to the one-dimensional multiple equations case by using the superposition
principle, a well-known strategy used when solving non-homogeneous second order or-
dinary differential equations. Finally, the stabilization technique is applied to mutually
perpendicular spatial dimensions in order to deal with multidimensional problems.

Applications to several prototypical linear coupled systems of partial differential
equations, of interest in several scientific disciplines, are presented. Subsequently the
stabilization technique is applied to the continuum dislocation transport equations,
involving their non-linearity, their strongly coupled character and the special boundary
conditions used in this context; a combination of additional difficulties which most
traditional stabilization techniques are unable to deal with. The proposed stabilization
scheme has been successfully applied to these equations. Its effectiveness in stabilizing
the classical Bubnov-Galerkin scheme and being consistent with the discretized partial
differential equation are both demonstrated in the numerical simulations performed.
Such effectiveness remains unaffected when different types of dislocation transport
models with constant or variable length scales are used.

These results allow envisioning the use of the developed technique for simulating
systems of strongly coupled convection-diffusion-reaction equations with an affordable
computational effort. In particular, the above mentioned crystal plasticity models can
now be handled with reasonable computation times without the use of extraordinary
computational power, but still being able to render accurate and physically meaningful
numerical approximations.
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Chapter 1

Introduction

This chapter defines the motivation and objectives of the present work. This is
done giving a general overview of the state of the art of the two main topics this
work touches, namely numerical stability for convection-diffusion-reaction equations
and crystal plasticity based on continuum dislocation transport. It also provides a
summary of the work carried out during the research project which resulted in the
present manuscript. The final section is entirely devoted to outlining the general
structure of this thesis.

1.1 Motivation

Partial differential equations involving diffusive, convective and reactive terms ap-
pear naturally in the modelling of a large variety of processes of practical interest in
several branches of science such as biology, chemistry, economics, physics, physiology
and materials science. Moreover, in some instances several species or components
interact with each other, leading to strongly coupled systems of convection-diffusion-
reaction equations [3–6, 14, 15, 17, 18, 30, 37, 45, 70, 71, 84].

Of special interest in this thesis are the continuum dislocation transport equations
used to describe the plastic behaviour of crystalline materials at the meso-scale. This
interest originates in the fact that an accurate description of the plastic behaviour of
materials is of paramount importance in materials science applications. For crystalline
solids, inelastic effects have been taken into account at the level of single crystals by
various types of crystal plasticity models. Among these, models based on dislocation
transport equations are appealing because they establish a link with the true physical
process underlying the plasticity, i.e. glide of dislocations [42]. For efficiency, these
frameworks are formulated in terms of dislocation densities, rather than dislocations
as individual entities, resulting in a continuum description. The resulting transport
equations consist of a set of coupled, transient, and non-linear partial differential
equations, involving spatial derivatives of the dislocation densities of both first and
second order [21, 28, 31, 32, 32, 36, 66, 79, 85, 86].

1



2 Section 1.1. Motivation

Analytical solutions for convection-diffusion-reaction equations are extremely scarce
and practically limited to linear equations with homogeneous coefficients and simple
initial and boundary conditions, even in the single equation case. Therefore, resorting
to numerical approximations is the most affordable and often the only viable strategy
to deal with these models. However, when classical numerical methods are used to
approximate the solutions, even in the simplest one dimensional case, in the steady
state regime, for a single equation, instabilities in the form of node to node spurious
oscillations are found when the convective or reactive terms dominate over the diffusive
term [26, 63, 73, 76, 81, 82, 87].

To address these numerical instabilities for the single equation case, stabilization
techniques have been developed over the years [7, 13, 23, 27, 33, 41, 43, 44, 56, 57, 60,
87]. The vast majority of these stabilization techniques, which have been developed in
the context of the finite element method, focus on the numerical approximation of the
Navier-Stokes equations or other sets of equations in fluid dynamics. Many of them
borrow ideas originating from finite difference and finite volume methods [7, 23, 24,
44, 87]. However, such stabilization techniques are most often suited for particular
problems. Additionally, no extensive work has been carried out for coupled systems
of equations. The reason for this immaturity is the lack of a maximum principle when
going from a single transport equation towards coupled systems of equations [1, 12, 62].

Despite the aforementioned progress in fluid dynamics, in solid mechanics in gen-
eral, and in mechanics of materials in particular, extensive and fine tuned application
of such stabilization techniques has been developed only recently. The numerical dif-
ficulties mentioned above are particularly cumbersome when working with continuum
dislocation transport equations because of their intrinsic transient, non-linear and
convection-dominated nature. Their mutual coupling and the special types of bound-
ary conditions with which they are supplied add even more difficulty in their numerical
approximation [31, 36]. Most simulations of continuum dislocation transport problems
reported in the literature use extremely refined discretizations, thus largely avoiding
the problem. Some results however appear to nevertheless show traces of spurious os-
cillations in the solutions, which may be associated to the instability problem caused by
convection-like terms present in the systems of equations to be discretized [21, 85, 86].
The use of extremely fine discretizations is evidently not sustainable when going to
more realistic multi-dimensional problems due to their high computational cost.

Important progress has been recently achieved by applying some well-known stabi-
lization techniques like pure up-winding in the finite volume method context, Galerkin/
least-squares, and exponential filtering for a spectral method to dislocation transport
problems. It has been found in the first case that pure up-winding tends to cause
over diffusion [50] while in the two latter cases the artificial diffusion is controlled
by a damping parameter, which needs to be calibrated [20, 79]. A special effort is
therefore required in order to transfer the concepts and techniques nowadays standard
in the fluid dynamics community towards the mechanics of materials community. For
these reasons, a specific stabilization technique fitting the special characteristics of the
system of partial differential equations for dislocation transport must be developed.

Numerical stabilization for multidimensional coupled convection-diffusion-reaction equations.

Applications to continuum dislocation transport.



Section 1.2. Objectives 3

1.2 Objectives

In view of the difficulties previously mentioned for general systems of coupled
convection-diffusion-reaction equations, and in particular for the equations govern-
ing continuum dislocation transport, two main goals have been pursued during the
development of this work as reported in the present thesis. The first main goal is to
develop a stabilization technique for systems of coupled multidimensional convection-
diffusion-reaction equations based on coefficient perturbations. These perturbations
are optimally chosen in such a way that certain compatibility conditions analogous to
a maximum principle are satisfied. Once the computed perturbations are injected in
the classical Bubnov-Galerkin finite element method, they provide smooth and stable
numerical approximations of a perturbed problem that resembles as much as possible
the original problem at hand. It is important to remark that the main motivation
for the development of this stabilization technique is its application to the continuum
dislocation transport equations, in view of the difficulties encountered when dealing
with them, especially the avoidance of extremely fine discretizations which in turn
lead to excessively demanding computations. This application represents the second
main goal of the present work.

While pursuing these two main goals, several issues having profound scientific signif-
icance can be clearly identified. They are captured in the following research questions,
which this thesis aims to thoroughly answer.

1. Is it possible to construct an unconditionally stable numerical scheme with re-
spect the spatial discretization which is efficient for both the advective and di-
vergence forms of the convection-diffusion-reaction equation?

2. How to apply such a technique to the case of transient, non-linear and hetero-
geneous continuum dislocation transport equations?

3. How to cope with the different dislocation transport models available in the
literature? In other words, is it possible to develop a stabilization technique
being at the same time general but also highly versatile?

4. Is is possible to develop a methodology allowing the stabilization of of systems of
coupled convection-diffusion-reaction equations instead of only a single equation?

5. How to extend the stabilization technique to multi-dimensional domains?

6. How does the stabilization technique cope with two-dimensional crystal plasticity
based on continuum dislocation transport?

Numerical stabilization for multidimensional coupled convection-diffusion-reaction equations.

Applications to continuum dislocation transport.



4 Section 1.3. Structure of the thesis

1.3 Structure of the thesis

The remainder of this manuscript reflects the way in which the results have been
obtained during the research project. This implies that the complexity of the problems
addressed increases chapter by chapter.

� Chapter 2. The next chapter presents the development of a stabilization tech-
nique for the simplest of the situations of interest in this work, namely for the
single one-dimensional convection-diffusion-reaction equation. Subsequently, the
stabilization technique is applied to the convection dominated continuum dislo-
cation transport equations and its performance is assessed through a thorough
numerical assessment.

� Chapter 3. The stabilization technique is extended to the case of a system of
coupled one-dimensional differential equations by using the superposition prin-
ciple, a well-known strategy used when solving non-homogeneous second order
ordinary differential equations by analytical means. Three problems coming from
different scientific fields are considered in order to test the effectiveness of the sta-
bilization technique in treating systems of coupled convection-diffusion-reaction
equations.

� Chapter 4. Once the stabilization technique has been extended to coupled sys-
tems of equations, it is well suited for the numerical treatment of the continuum
dislocation transport equations irrespective of the variables used or the mod-
elling assumptions considered. This application is presented in this chapter. It
is carried out using a set of field variables for which the stabilization technique
originally developed in Chapter 2, prior to the rigorous extension to coupled
systems of equations, cannot successfully be employed.

� Chapter 5. This chapter pursues the extension of the stabilization technique
from one-dimensional to two-dimensional configurations. The three-dimensional
case is also discussed in this chapter. Applications to several prototypical linear
coupled systems of partial differential equations, of interest in several scientific
disciplines, are presented.

� Chapter 6. The stabilization technique, already extended to coupled systems
of equations in multi-dimensional domains, is next applied to the continuum dis-
location transport equations this time coupled with the mechanical equilibrium
equations in two-dimensional domains.

� Chapter 7. This closing chapter presents the main conclusions of this work. It
also discusses some of the drawbacks still to be overcome and suggests directions
for further improvement of the methodology and its analysis.

Numerical stabilization for multidimensional coupled convection-diffusion-reaction equations.
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Chapter 2

Stabilization of
One-Dimensional Continuum
Dislocation Transport

Abstract

Recent developments in plasticity modeling for crystalline materials are based on
dislocations transport models, formulated for computational efficiency in terms of
their densities. This leads to sets of coupled partial differential equations in a con-
tinuum description involving diffusion and convection-like processes combined with
non-linearity. The properties of these equations cause the most traditional numerical
methods to fail when applied to solve them. Therefore, dedicated stabilization tech-
niques must be developed in order to obtain physically meaningful and numerically
stable approximations. The objective of this chapter is to present a dedicated stabi-
lization technique and to apply it to a system of dislocation transport equations in one
dimension. This stabilization technique, based on coefficient perturbations, success-
fully provides unconditional stability with respect to the spatial discretization. Several
of its favorable characteristics are discussed, providing evidence of its versatility and
effectiveness through a thorough numerical assessment.

keywords.- Crystal plasticity, Dislocation transport, Stabilized finite element method.

This chapter is based on: Hernández H., Massart T.J., Peerlings R.H.J., and Geers M.G.D. 2015.
Towards an unconditionally stable numerical scheme for continuum dislocation transport. Modelling
and Simulation in Materials Science and Engineering, 23, No. 8.
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6 Section 2.1. Introduction

2.1 Introduction

The accurate description of the plastic behaviour of materials is of paramount im-
portance in engineering applications. For crystalline solids, inelastic effects have been
taken into account at the level of single crystals by various crystal plasticity models
[66]. At a higher spatial resolution, plasticity in a single crystal can be modelled using
dislocation transport equations [21, 32, 36].

For efficiency, such frameworks are formulated in terms of dislocation densities,
rather than dislocations as individual entities, resulting in a continuum description.
The transport equations consist of a set of coupled, transient, and non-linear partial
differential equations, involving derivatives in space of both first and second order
[31, 32]. The simultaneous presence of both order derivatives of transported densities
complicates the numerical treatment of such systems of equations; especially when the
first order convection-like term dominates the second order diffusion-like term.

When classical numerical schemes, such as centred finite differences or Bubnov-
Galerkin finite elements, are used to approximate the solution of such transport
problems (combining convection and diffusion), spurious and non-physical oscillations
appear, rendering the numerical approximation unstable. Hence, stabilization ap-
proaches must be used in order to get physically meaningful and numerically stable
approximations. In the wider finite element context, several stabilization techniques
have been proposed; e.g. the Streamline Upwind Petrov-Galerkin method [7, 41], the
Galerkin Least-Squares method [27], the bubble multi-scale stabilization method [60],
the sub-grid method [33], and the finite calculus-based approach [56, 57]. The vast
majority of these techniques deals mainly with convection dominated cases [23, 87].
The addition of a reaction term can also cause numerical instabilities by itself, even
in the absence of convection. Alternative stabilization techniques have also been de-
veloped to deal with the general convection-diffusion-reaction equation with diffusion
being the weakest transport mechanism [13, 43, 44].

In spite of the success of the existing stabilization techniques, the direct and straight-
forward application of the Streamline Upwind Petrov-Galerkin method, by far the most
popular stabilization technique, does not remedy the instability of the numerical ap-
proximation for the system of equations treated in this chapter if applied as originally
proposed [87]. This is associated with the non-standard way in which integration by
parts in the weak form is performed; which is necessary in order to be able to apply
physically meaningful boundary conditions, as will be explained in the sequel. How-
ever, significant progress has recently been made in order to overcome this difficulty
[13, 23]. Some well-known stabilization techniques like pure up-winding in the finite
volume method context and Galerkin/least-squares have been successfully applied to
dislocation transport problems. It has been found in the former case that pure up-
winding tends to cause over diffusion [50] while in the latter case the artificial diffusion
is controlled by a damping parameter to be calibrated [79]. For these reasons, a spe-
cific stabilization technique fitting the special characteristics of the system of partial
differential equations for dislocation transport must be developed.

Numerical stabilization for multidimensional coupled convection-diffusion-reaction equations.

Applications to continuum dislocation transport.



Section 2.2. Continuum model for dislocation transport 7

The development of such a tailor-made stabilization technique and its application
to the dislocation density transport equations is the aim of this chapter. This will be
achieved by enforcing the discrete maximum principle [12, 73, 80], which is the transla-
tion of the continuous maximum principle related to the physics of the problem. This
continuous maximum principle, in its simplest form, establishes that in the absence of
sources and sinks (including reaction terms) the solution of a second order differential
equation has no maxima other than at the boundaries [62]. Furthermore, it will also
be shown, and confirmed numerically, that the stabilized finite element approximation
converges to that of the classical Bubnov-Galerkin scheme if the mesh Péclet number
is small enough. For transparency, we limit our development to the one-dimensional
problem of parallel, infinite straight edge dislocations which glide under the influence
of an applied shear stress. The approach followed can however easily be extended to
more complex, multidimensional situations, since the main numerical difficulty, the
convection-dominance, remains the same.

The chapter is organized as follows. In Section 2.2 the physical problem, illustrated
through the shearing of an infinite crystal, is sketched. Its translation, based on some
simplifying assumptions, into a system of partial differential equations is presented
next. Special attention is paid to the formulation of boundary conditions; their phys-
ical meaning and the mathematical implications are discussed in detail. Section 2.3 is
devoted to the numerical approximation of the system of partial differential equations
by the finite element method, and to the development of a stabilization technique for
the steady state linear convection-diffusion-reaction equation with constant coefficients
in one spatial dimension. Unconditional stability and consistency of the stabilization
technique for the convection-diffusion case are discussed. At the end of this section,
the non-linearity in the second order derivative term is taken into account and its
effect on the proposed stabilization technique is discussed. Section 2.4 assesses the
stabilization technique through three numerical examples. The first one focuses on
demonstrating the effectiveness of the stabilization technique, the second one inves-
tigates its consistency, and in the last example detailed results concerning the time
evolution are presented. Finally, Section 2.5 presents the main conclusions of this
chapter and discusses some future developments to be considered.

2.2 Continuum model for dislocation transport

The main focus of this chapter is the development of an efficient stabilization tech-
nique for modeling dislocation transport in a single crystal. In these models, the
governing equations are typically written in terms of dislocations densities on glide
planes. The total dislocation density on a particular plane is defined as the total length
of dislocation line per unit crystal volume [36, 42]. We consider a single glide system
with infinite parallel edge dislocations. Positive and negative dislocations densities,
denoted respectively by ρ� and ρ�, rather than the more traditional total dislocation
density ρ � ρ� � ρ� and geometrically necessary dislocation density κ � ρ� � ρ�

are used. This choice is made since ρ� and ρ� have the same physical interpretation
and therefore the same restrictions, e.g. both must be non-negative. Moreover, the
final system of partial differential equations obtained when using positive and negative
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dislocation densities shows a symmetric structure with respect to the terms differenti-
ated in space. Interactions between dislocations of opposite sign such as annihilation,
will not be taken into account for the sake of simplification. Positive and negative
dislocations are therefore assumed to move on independent glide planes. As an ide-
alization, an infinite medium is considered in the direction perpendicular to the glide
planes and, it is subjected to a shear stress τ . This configuration is depicted in Figure
2.1, together with the boundary conditions to be satisfied by the dislocation fluxes as
described in detail later. Whereas this particular system is obviously simplified, it is
expected that the stability analysis carried out here carries over to more general cases
as well.

x

8

�8

τ

τ

Φ� � 0Φ� � 0

Figure 2.1: Positive and negative dislocations in independent glide planes bounded by
impenetrable barriers.

The stress τ causes the positive dislocations to pile-up at the right of the glide plane
while negative dislocations do the same at the left. Typical solutions will exhibit
boundary layers at the extremities of the spatial domain as shown with solid lines in
Figure 2.2 for positive and negative dislocations densities in blue and red, respectively.
Nevertheless, the numerical approximation of the solution by classical finite elements
suffers from spurious oscillations, as shown with dashed lines in the same figure. The
smooth and physically meaningful result can be obtained using stabilization techniques
tailored to the system of equations under investigation, as will be developed in the
sequel.

2.2.1 Governing equations

The system of equations describing the dislocation transport in the considered con-
figuration can be written as the general conservation equation

Bρ

Bt
�

B

Bx
pΦq � s, (2.1)

where ρ is a generic dislocation density to be transported and conserved, Φ is its flux
and s is its corresponding source term.

Numerical stabilization for multidimensional coupled convection-diffusion-reaction equations.

Applications to continuum dislocation transport.
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Figure 2.2: Pile-up of positive and negative dislocations densities. Classical finite ele-
ment solutions (dashed) with spurious oscillations; smooth and non-negative stabilized
solutions (solid).

This equation can be particularized for positive and negative dislocation densities
to get the pair of conservation equations

Bρ�

Bt
�

B

Bx

�
Φ�

�
� s�, (2.2)

Bρ�

Bt
�

B

Bx

�
Φ�

�
� s�, (2.3)

with source terms s� and s� for positive and negative dislocations densities respec-
tively. Note that one would generally have s� � s� and that this source may depend
on ρ� and ρ�. The corresponding fluxes can be expressed as

Φ� � ρ�v�, and Φ� � ρ�v�, (2.4)

where v� and v� are the velocities of positive and negative dislocations. These ve-
locities can be obtained by an averaging process along a single glide plane, of the
Peach-Koehler forces experienced by each dislocation considering a constant drag co-
efficient B. This force originates from the externally applied forces and the forces
induced by the interactions with other dislocations. After performing such averaging
in the infinite medium considered here, the velocities can be expressed as [21, 31, 32]

v� � �
bτ

B
�L 2 Ḡb

2

6B

�
pb11 � b12q

Bρ�

Bx
� pb11 � b12q

Bρ	

Bx

�
. (2.5)

in which the first term is classical and the second accounts for the internal stress due
to the presence of dislocation density gradients. In this expression, b is the Burgers
vector length, Ḡ � G{p2p1� νqq is a material constant and τ is the externally applied
shear stress. Finally L denotes the length scale. Note that setting L � h, with
h being the glide plane vertical spacing, leads to constant length scale models. By
setting L � 1{

a
ρ� � ρ� variable length scale models are obtained. Two constants,
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b11 � p2 � aqb1 and b12 � p2 � aqb2, have been introduced in order to allow addressing
several dislocation transport models presented in the literature. If only interactions
between dislocation of the same sign are taken into account, then a � 0; otherwise
a � 1. Moreover, by taking b1 � 1 and b2 � 1, models of the same type as the model
presented in [21] are obtained. On the other hand, taking b1 � 0 and b2 � 12{p2� aq
leads to models like the one presented in [32]. The superscript � is used to denote
velocities of both positive and negative dislocations in a single expression. To compact
subsequent manipulations the following constants are introduced

C0 �
bτ

B
, and C1 �

Ḡb2

12B
, (2.6)

which allows expressing the positive and negative fluxes generically as

Φ � ρ

"
Ĉ0 � C1L

2

�
pb11 � b12q

Bρ

Bx
� pb11 � b12q

Bρ̂

Bx

�*
, (2.7)

in which the constant Ĉ0 is simply C0 when used with Equation (2.2) and �C0 when
used in Equation (2.3). Similarly ρ̂ is ρ� when used with Equation (2.3) and ρ� when
used with Equation (2.2). With these conventions it is now possible to work directly
on the general conservation Equation (2.1) without the need to refer to any particular
form as in the Equations (2.2-2.3).

The substitution of the generic flux given by Equation (2.7) in the conservation
Equation (2.1) leads to a system of two transient and non-linear partial differential
equations for which analytical solutions are not available [75]. Therefore, a numerical
approximation is required for which the finite element method will be used in the next
section.

2.2.2 Boundary and initial conditions

From the physical viewpoint, two types of boundary conditions have to be consid-
ered. The first one consists of a free surface where dislocations can escape, causing their
corresponding density to vanish, i.e. ρ� � 0. This corresponds to Dirichlet boundary
conditions for the conservation Equation (2.1). Conversely, in other cases the bound-
ary corresponds to an impenetrable barrier for the dislocations, e.g. a grain or phase
boundary. This situation is shown in Figure 2.1 and can be stated as Φ�|Γ � 0. Note
that this corresponds to a coupled mixed boundary condition since, as is clear from
Equation (2.7), the corresponding dislocation density and the normal derivatives of
both dislocation densities across the boundary are involved.

In order to mathematically close the system of partial differential equations describ-
ing the dislocation transport, it must be supplemented with proper initial conditions
that correspond with a distribution of the positive and negative dislocation densities
on the whole spatial domain at the initial time, i.e. ρ�0 pΩq � ρ�pΩ, t � 0q.
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2.3 Stabilization by perturbation in finite element
approximation

This section focuses on the development of a stabilization technique in the context of
the finite element method, fitting the special requirements and features of the system
of partial differential equations for dislocation transport.

For the sake of simplicity, all the discussion and subsequent developments shall be
carried out first using a generic linear conservation equation. The non-linearity in the
second order derivative and its effects on the stabilization technique are discussed at
the end of this section.

2.3.1 Spatial discretization

The point of departure is a linear conservation equation with a reaction term of the
form

Bu

Bt
�

B

Bx
pF q � γu � f, (2.8)

where u is the physical quantity to be transported, F its corresponding flux, γ P R is
the reaction coefficient and f P R the source term.

It will be assumed that the flux is composed of a diffusive and a convective contri-
bution, corresponding to two different physical transport phenomena, i.e.

F � �α
Bu

Bx
� βu, (2.9)

where α P R� is the diffusion coefficient and β P R is the convection coefficient.
Throughout this section all coefficients will be regarded as constants. The direct
substitution of the flux given by Equation (2.9) in the general conservation Equation
(2.8) leads to

Bu

Bt
�

B

Bx

�
�α

Bu

Bx
� βu



� γu � f, (2.10)

which will be referred to as the divergence form of the conservation equation due to
the fact that integration over the whole domain gives, via the divergence theorem, the
total flux across the boundary.

Expanding the spatial derivative on the terms composing the flux gives

Bu

Bt
�

B

Bx

�
�α

Bu

Bx



� β

Bu

Bx
� γu � f, (2.11)

Equation (2.11) will be referred to as the advective form because of the direct inter-
pretation of the first spatial derivative term which represents convection.
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12 Section 2.3. Stabilization by perturbation in finite element approximation

Multiplying Equation (2.8) by a weighting function w, and integrating over the
whole spatial domain, one obtains the weak form»

Ω

w
Bu

Bt
dΩ�

»
Ω

w
B

Bx
pF q dΩ�

»
Ω

wγudΩ �

»
Ω

wfdΩ, (2.12)

By integrating by parts the second term in the left hand side one obtains»
Ω

w
Bu

Bt
dΩ�

»
Ω

Bw

Bx
FdΩ�

»
Γ

wFdΓ�
»

Ω

wγudΩ �

»
Ω

wfdΩ. (2.13)

Note that integration by parts on the whole flux is seldom done in the context of a
finite element solution for fluid problems. Instead, integration by parts is most often
only performed on the terms differentiated up to the second order, i.e. the advective
form (2.11) is preferred over the divergence form (2.10). Here, integration by parts is
performed on the whole flux term in order to easily handle the boundary condition
corresponding to an impenetrable wall, which involves the total flux at the boundary,
and not only its diffusive part, i.e. the divergence form (2.10) will be used in what
follows.

The boundary integral term in Equation (2.13), accommodates naturally the re-
quired essential and natural boundary conditions. The first case corresponds to Dirich-
let boundary conditions on u, for which we choose the weighting function w to vanish
at this portion of the boundary, that is w pΓDq � 0. The second type of boundary
condition of interest is a homogeneous Robin boundary condition which prevents the
flow of the conserved quantity u out the spatial domain; i.e. F pΓRq � 0. In both
cases the boundary integral in Equation (2.13) vanishes and hence it will be omitted
in the sequel.

To discretize Equation (2.13), the weighting function w and the transport variable
u are expressed as linear combinations of their corresponding nodal values using trial
and shape functions Wk and Pk associated with the ne nodes within each finite element
as follows

w �
nȩ

k�1

Wkwk and u �
nȩ

k�1

Pkuk. (2.14)

After evaluation of the element integrals, the element matrices are assembled to obtain
a global discretized system of the form

M 9u� pD �C �Rqu � f , (2.15)

where M is the mass matrix, D is the diffusion matrix, C is the convection matrix and
R is the reaction matrix. u is a vector containing the nodal values of the transported
quantity to be approximated, where the superimposed dot implies differentiation in
time. Finally f takes into account the source term f and boundary conditions.

Using a Bubnov-Galerkin approach, with Pk � Wk, and after discretization in
time of Equation (2.15) by a two-step finite difference scheme, physically meaningful
solutions can be obtained when the coefficients related to convection β and reaction
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γ are small with respect to the diffusion coefficient α on a sufficiently fine mesh. This
corresponds to a diffusion dominated problem. Yet for many physical situations this
diffusion dominance may not be present. For instance, in the absence of reaction
(γ � 0) and for a convection coefficient β that is not small compared to the diffusion
coefficient α, the problem is dominated by convection. In the latter case, oscillations
appear when β is increased or when the mesh is coarsened, polluting the quality of the
numerical approximation, a problem that becomes more pronounced as β increases
[23, 24, 87].

2.3.2 Stabilization by coefficient perturbation

The oscillation phenomenon described in Section 2.3.1 is caused by the fact that the
classical Bubnov-Galerkin method applied to the considered partial differential equa-
tions does not satisfy the discrete maximum principle [12, 43], which would guarantee
uniform convergence of the finite element approximation. A stabilization technique is
therefore required in order to get physically meaningful approximations.

Several of these stabilization techniques are available in the literature [7, 13, 27, 33,
41, 44, 56, 57, 60]. The vast majority developed in the context of the finite element
method, focus on the numerical approximation of the Navier-Stokes or other set of
equations in fluid dynamics. Many of these techniques borrow ideas originating from
finite difference and finite volume methods [7, 23, 24, 44, 87].

The most extensively used technique, the Streamline-Upwind Petrov-Galerkin ap-
proach, denoted SUPG, is based on a modification of the weighting functions by the
addition of a perturbation proportional to the gradient of the interpolation functions.
The magnitude of the perturbation depends on the Péclet number, that measures the
relative importance of convection over diffusion [7, 43]. Modifying the weighting func-
tions proportional to the gradient of the interpolation functions in the present case,
where integration by parts is applied on the whole flux, including first order terms,
makes the SUPG technique inactive if applied in a straightforward manner, as imple-
mented in [87]. This is due to the fact that this implementation of SUPG has been
originally designed for problems in which integration by parts is applied only on the
terms differentiated up to second order, i.e. when working with the advective form
(2.11) as usually done in the finite element method for fluid related problems. When
using integration by parts on the whole flux with the divergence form (2.10), one
can note that if linear interpolation functions are used in one dimension, the SUPG
modification of the weighting functions vanishes and has no significant effect.

To deal with the discretization of Equation (2.13), an alternative stabilization tech-
nique is developed next. It is based on adding a perturbation to the problem co-
efficients in order to obtain a numerical approximation free of oscillations. This is
achieved by enforcing the numerical scheme to satisfy the discrete maximum prin-
ciple [7, 12, 43]. Due to the complexity of the original problem at hand (involving
non-linearity in both the first and second order spatial derivatives, with two different
coupled variables in a transient state), the intended stabilization technique is first in-
vestigated for a simplified linear Dirichlet boundary value problem in divergence form
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defined as follows

B

Bx

�
�α

Bu

Bx
� βu



� γu � f in Ω � p0, 1q, (2.16)

u px � 0q � u0 and u px � 1q � u1, (2.17)

where α P R� is the diffusion coefficient, β P R is the convection coefficient, and
γ P R� is the reaction coefficient. Finally, f stands for a source term.

After discretization of Equation (2.16) with a Bubnov-Galerkin approach as in the
previous section, using a uniform mesh with element length ` and linear shape func-
tions, the stencil corresponding to the i-th node, or more precisely the i-th row of the
corresponding matrix equation, is given by

�

�
α

`
�
β

2
�
γ`

6



upi�1q �

�
2α
`
�

4γ`
6



upiq �

�
α

`
�
β

2
�
γ`

6



upi�1q � `fi. (2.18)

In order to establish a stable numerical scheme, the stencil (2.18) must satisfy the
discrete maximum principle [12, 43], which in turns requires that the coefficient matrix
must be diagonally dominant by rows with non-positive off-diagonal entries [67, 80],
that is

ņ

j�1

aij ¥ 0, @ i � 1, � � � , n, (2.19)

aij ¤ 0, @ i, j � 1, � � � , n; i � j (2.20)

A P Rn�n being the coefficient matrix obtained after assembly of the element matrices.
According to (2.19-2.20), the numerical scheme will be stable only if the physical
coefficients and the element size satisfy the following inequality

α

`
�
|β|

2
�
γ`

6
¥ 0. (2.21)

The starting point in the development of the stabilization technique is the fact that
the numerical scheme presented above does not satisfy the discrete maximum principle,
and is therefore unstable for the actual combination of physical coefficients α, β, and
γ and element size `. Instead of enforcing Inequality (2.21) by mesh refinement, the
solution will be approximated by a modified, though similar, problem to the one
defined by Equations (2.16-2.17) for which it is known a priori that it is stable. By
construction, the difference between these two problems lies exclusively in the value
of the physical coefficients α, β, and γ; the essential form of the differential operators,
source terms and boundary conditions remain unchanged.

The modification of the physical coefficients defines a perturbed problem, as it will
be refered to hereafter, with respect to the actual problem to approximate. According
to this terminology we define the perturbed coefficients as

c̃ � c� c�, with c � α, β, γ, (2.22)
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where the tilde is used to refer to the perturbed coefficients, and the asterisk to the
coefficient perturbations.

The perturbed problem is now discretized as previously done for the original one,
with the only difference that the perturbed coefficients are used instead. After assem-
bly, the i-th stencil of the matrix equation is extracted and rearranging terms, one
obtains

�
α̃

`

�
upi�1q

� 2upiq � upi�1q
	
�
β̃

2

�
upi�1q

� upi�1q
	
�
γ̃`

6

�
upi�1q

� 4upiq � upi�1q
	
� `fi.

(2.23)

The coefficient perturbations now have to be selected in a way that the stencil given
by Equation (2.23) does satisfy the discrete maximum principle. As an additional
constraint, the problem defined by these perturbations is required to be as close as
possible to the original problem, i.e. the minimal perturbations have to be found that
render the perturbed problem stable.

This minimization is achieved by resorting to the exact solution of the homogeneous
differential equation associated to the convection-diffusion-reaction Equation (2.16)

u pxq � Aeλ1x �Beλ2x, (2.24)

where the constants A and B depend only on the boundary conditions, and where
λ1,2 are the roots of the characteristic polynomial defined by Equation (2.16) in the
homogeneous case as given by

λ1,2 �
β

2α
�

d�
β

2α


2

�
γ

α
. (2.25)

This exact solution is used by evaluating it at the three equidistant nodes, i.e. at xi�1,
xi and xi�1, defining the finite element stencil (2.18)

upiq � Aeλ1xi �Beλ2xi , and upi�1q � Aeλ1xie�λ1` �Beλ2xie�λ2`, (2.26)

and injecting these evaluations in the perturbed stencil given by Equation (2.23), in
order to recover the exact values at the nodes. After some elementary algebra, the
following expression is obtained

α̃

`

 
Aeλ1xi r1� coshpλ1`qs �Beλ2xi r1� coshpλ2`qs

(
�

β̃

2
 
Aeλ1xi sinhpλ1`q �Beλ2xi sinhpλ2`q

(
� (2.27)

γ̃`

6
 
Aeλ1xi r2� coshpλ1`qs �Beλ2xi r2� coshpλ2`qs

(
� 0.

Two independent equations can be obtained from this general expression. The first
one is obtained by choosing suitable boundary conditions in order to get B � 0.
By changing the boundary conditions such that A � 0, a second equation can be
generated. Together, these two equations form an under-determined system for the
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three perturbed coefficients, which reads as follows

α̃

`
r1� coshpλ1`qs �

β̃

2
sinhpλ1`q �

γ̃`

6
r2� coshpλ1`qs � 0, (2.28)

α̃

`
r1� coshpλ2`qs �

β̃

2
sinhpλ2`q �

γ̃`

6
r2� coshpλ2`qs � 0. (2.29)

Note that these two equations represent a linear system with three unknowns for which
normalization (by pre-multiplication by its coefficient matrix transpose) is not useful
due to its homogeneity. As a consequence it is not feasible to perturb the three physical
coefficients at once. Therefore, one of the perturbations is arbitrarily set to zero and
the others are determined by solving the remaining 2� 2 linear system.

In order to illustrate the effectiveness of this stabilizing scheme, a simplified version
of Equations (2.16-2.17) is considered with γ � 0. This is the convection-diffusion
problem, when convection is dominant. The stability condition for the original, non-
perturbed problem according to Inequality (2.21) then reads

Pe def
�

β`

2α
¤ 1, (2.30)

where Pe is the mesh Péclet number. The roots of the characteristic polynomial
associated with the partial differential equation are then

λ1 � λ �
β

α
and λ2 � 0, (2.31)

and therefore, the system of the two Equations (2.28-2.29) degenerates into a single
equation that states the relationship to be satisfied among the perturbed convection
and diffusion coefficients as

α̃

`
r1� coshpλ`qs �

β̃

2
sinhpλ`q � 0. (2.32)

This under-determined equation is solved by setting one of the coefficient perturbations
to zero, allowing to extract the other perturbation in terms of the actual convection
and diffusion coefficients.

If the diffusion coefficient is perturbed, i.e. if β� � 0 is imposed, the diffusion
perturbation is obtained as

α� � αPe
�
cothpPeq � Pe�1

�
. (2.33)

Note that Equation (2.33) resembles the well-known artificial diffusion formula used
in the SUPG implementations [23, 24, 87]. Note that this function is strictly non-
negative, has a single root when Pe � 0, and is symmetric around it. This means that,
for unstable problems the diffusion is artificially increased to have a stable solution.
If only diffusion is present in the original problem, the diffusion perturbation vanishes
and the stabilization technique does not introduce any effect, as expected. Moreover,
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the strictly positive character matches the fact that diffusion always acts in the same
manner towards all directions. Finally, it can be verified that the discrete maximum
principle is indeed fulfiled after perturbing the diffusion coefficient by evaluating In-
equality (2.21) with the perturbed diffusion α̃ instead of the actual diffusion α. This
yields

cothpPeq ¥ 1, (2.34)

a condition that is always satisfied for any value of Pe by definition, which means that
unconditional stability is guaranteed.

Note that another choice can be made for the perturbations by setting α� � 0 and
perturbing the convection coefficient. In this case the corresponding perturbation will
be given by

β� � βPe�1 rtanhpPeq � Pes . (2.35)

Again, this function has a single root at Pe � 0. This time, β� is odd in β. This
agrees with the fact that convection is directional and can be reversed. This function
introduces an artificial convection velocity but this time in the direction opposite to
the actual physical velocity, i.e. it reduces the convective velocity. When choosing
convection to be perturbed, evaluating Inequality (2.21) yields

tanhpPeq ¤ 1, (2.36)

which is also always satisfied.

Equations (2.34) and (2.36) confirm that the proposed methodology furnishes an
unconditionally stable linear steady state convection-diffusion equation irrespective of
the coefficients perturbed. The artificial diffusion formula used for the SUPG stabiliza-
tion method can be obtained as a special case of the present stabilization technique.
The proofs of unconditional stability for the diffusion-reaction case, with β � 0, can
also be obtained by similar developments. The situation in which all three physical
mechanisms are acting is more intricate, but it is possible to demonstrate that it is
also unconditional stable. Details for the two latter cases have been omitted here for
brevity.

Note that, after spatial discretization on a uniform mesh, the advective form given
by Equation (2.10) and the divergence form given by Equation (2.11) both lead to the
same stencil for the ith node. In other words, the i-th row of the coefficient matrix
given by Equation (2.18) will be the same irrespective of the form chosen. Since the
stabilization technique developed here is based precisely on the use of this stencil, the
method proposed is useful irrespective of the form used in the spatial discretization.

As a closing remark for the present section, it is emphasized that the stability
problem is inherent to the numerical scheme, and not to the physical problem, when
applied on a particular mesh. When the mesh is refined, i.e. `Ñ 0, the magnitude of
the coefficient perturbations go to zero, irrespective of the magnitude of the physical
coefficients, as is clear from Equations (2.33-2.35) for the convection-diffusion case.
The same applies to the diffusion-reaction and the convection-diffusion-reaction cases.
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This means that the stabilized scheme proposed here is consistent since, as the mesh
is sufficiently refined, perturbation is not required because the original problem is
already stable.

2.3.3 Accounting for non-linearity

The terms involving the non-linearity in the conservation Equations (2.2-2.3) after
substitution of the corresponding fluxes given by Equation (2.7) are non-standard
with respect to those encountered in fluid dynamics applications. For instance, the
Navier-Stokes Equations for Newtonian fluids include non-linearity in the convective
term, which is first order in space [24]. Still in the fluids community, the equations
modeling the fluid flow with a free surface through a porous medium or heat transfer
with temperature dependent conductivity incorporate non-linear diffusion [2, 22, 46].
In the present case, the non-linearity is present in both the convective and diffusive
terms.

The non-linearity in the second order, diffusion term is examined here, still in a sim-
plified problem similar to the one given by Equation (2.16). The non-linear convection-
diffusion-reaction equation in steady state regime then reads

� α
B

Bx

�
u
Bu

Bx



� β

Bu

Bx
� γu � f in Ω � p0, 1q, (2.37)

which after discretization using the Bubnov-Galerkin finite element method leads to
the i-th stencil on a uniform mesh

�

�
upi�1q

2

α

`
�
β

2
�
γ`

6



upi�1q

�

�
upiq

2

2α

`
�

4γ`

6



upiq�

�
upi�1q

2

α

`
�
β

2
�
γ`

6



upi�1q

� `fi.

(2.38)

Diagonal dominance, which has to be satisfied in order to fulfil the discrete maximum
principle, requires

γ`�
α

2`

�
upi�1q � 2upiq � upi�1q

	
¥ 0, (2.39)

while the remaining two conditions to be satisfied in order to fulfil Inequalities (2.19-
2.20) now read
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�
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�
γ`

6
¥ 0. (2.40)

For the convection-diffusion case with γ � 0, from Inequality (2.39) it is required that

B2u

Bx2
�
upi�1q � 2upiq � upi�1q

`2
¤ 0. (2.41)

and
Coff

def
�

β`

upmqα
¤ 1, with upmq � min

iPI
upiq, (2.42)

I � t i | xi P Ω u being the set of nodes defining the finite element mesh, with upmq

the minimum nodal value of the approximated solution in the spatial domain, and
Coff the off-diagonal coefficient associated with the i-th stencil.
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The analogy of condition (2.42) on Coff with the corresponding one for the Péclet
number defined by Inequality (2.30) is obvious and allows defining a point-wise effective
diffusion coefficient as

αe �
1
2
upiqα. (2.43)

Note that coercitivity and ellipticity of the second order differential operator is retained
if upiq ¡ 0, a condition that should be satisfied for dislocation density variables.

Using this effective diffusion coefficient in the stabilization technique defined in Sec-
tion 2.3 allows one to extend it to the non-linear convection-diffusion-reaction Equation
(2.37). This can be explained by the fact that the stabilization technique works in an
element-wise fashion, that is, the stability problem is treated at each element inde-
pendently, regardless of all other elements in the mesh, instead of trying to face the
stability problem as a global one. The proposed stabilization technique can therefore
be used on irregular meshes, an appreciable feature for future extensions to multidi-
mensional problems. Moreover, spatially variable convection, diffusion, and reaction
coefficients may also be considered.

This also ensures that in each element the perturbation introduced, which is re-
sponsible for a deviation from the original problem to the perturbed problem that
is actually approximated, is the lowest possible ensuring stable numerical approxi-
mations. Furthermore, the magnitude of the perturbation decreases if the mesh is
refined.

2.4 Computational assessment of the stabilization
scheme

This section presents some numerical examples which illustrate the efficiency and
consistency of the developed stabilization technique applied to the dislocation trans-
port system given by Equations (2.2-2.3). In particular, a constant length scale model
including interactions between dislocations of different sign is considered. Thus L � h
and a � 1. Additionally b1 and b2 have been both set equal to one.

In order to apply the stabilization technique based on the linear steady state con-
vection-diffusion-reaction equation with constant coefficients and its non-linear exten-
sion to the dislocation transport equations, the generic flux of dislocations given by
Equation (2.1) is directly substituted in the general dislocation density conservation
Equation (2.2):

Bρ

Bt
�

B

Bx

��
Ĉ0 � 2C1h

2 Bρ̂

Bx



ρ� 4C1h

2ρ
Bρ

Bx

�
� s, (2.44)

in which terms acting as a convection-like coefficient and a diffusion-like coefficient
can be identified as

β pρ̂q � Ĉ0 � 2C1h
2 Bρ̂

Bx
and α pρq � 4C1h

2ρ. (2.45)
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This reveals the analogy between the dislocations transport Equation (2.1) and the
convection-diffusion-reaction Equation (2.16), and therefore enables a direct applica-
tion of the stabilization technique developed. Note that this analogy can always be
established irrespective of the model’s type used (as those presented in [21] or [32]),
of the length scale selected (constant or variable) and irrespective of whether the
interactions between dislocations of different sign are included or neglected.

To incorporate the transient character of the problem, the fully implicit backward
Euler method has been used for time integration. This scheme is unconditionally
stable with respect to time (step size ∆t) and the spectral properties of the matrices
appearing in Equation (2.15), despite having only first order accuracy [2, 19, 38, 49, 63].

For all simulations, the Picard iterative method is used to deal with the non-linear
system of equations obtained after discretization of the dislocation transport equations
at each time step [51, 59, 63, 64]. The difference among two successive approximations
is measured as

dpjq � ||ρ
pjq
t � ρ

pj�1q
t ||2, (2.46)

where j is the iteration number, and the sub-index t is used to emphasize the current
time step. The iteration is stopped as soon as the tolerance εn � 10�6 is reached,
that is, dpjq   εn. The initial guess is always taken as the final approximation at the
previous time step: ρp0qt�∆t � ρ

pjq
t .

At each non-linear iteration, a linear system of equations has to be solved. For this
purpose the BiCGStab method has been used having in mind a future multidimensional
extension of the framework which leads very large and sparse systems [67, 77, 78]. In
all cases, the maximum number of allowed iterations is set equal to the size of the linear
system, although the iteration process is stopped as soon as ||r pkq||{||b||   εs � 10�6

is reached, with r pkq the k-th residual vector and b the right hand side vector. The
final approximation of the previous iteration is always taken as the initial guess for
the linear solver. No preconditioning is used.

The physical parameters have been taken constant for the ease of comparison. The
values used correspond to those presented by [50] and are comparable to those used in
[21]. The domain considered has unit length L � 1 µm, and a single material has been
used on the whole domain. Its properties are as follows; h � 0.1 µm, b � 0.0003 µm,
B � 10�4 Pa s, ν � 1{3, G � 25 GPa. The initial condition for all problems was
chosen as ρ�0 � 200 µm�2. Finally, the time step is the same for all simulations and
equals ∆t � 10�1µs.

Only the applied stress τ , the mesh size `, and the final time Tf are modified during
this study. Once they are chosen for a particular problem they are not changed, i.e.
for a particular simulation the applied stress is constant over the whole domain which
is discretized with a uniform mesh.
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Even though the precise definition of a mesh Péclet number is not possible due to
the non-linear nature of the dislocation transport problem, see Expression (2.45), for
each simulation it is computed using the data corresponding to the initial condition,
and according to Equation (2.30) as

Pe �
C0`

4C1ρ0
, (2.47)

where it has been assumed that Bρ̂{Bx � 0 and ρ � ρ0 in the Equations (2.45).
Note that this is the most conservative situation. As the computation evolves in
time and dislocation transport takes place, negative dislocations pile up at the left
boundary of the spatial domain and thus the corresponding spatial density gradient
will be negative, which increases the magnitude of the convection-like term for positive
dislocations β�pρ�q as can be seen from the first Equation in (2.45). Likewise, positive
dislocations pile up in the opposite direction, leaving the left part of the spatial domain
causing a decrease of the diffusion-like term for positive dislocation density α�pρ�q,
see the second Equation in (2.45). Thus, as the simulations advance in time it is
expected that the stabilization technique will play a more prominent role, making this
initial mesh Péclet number, as defined by Equation (2.47) only useful for comparative
purposes.

2.4.1 Influence of the applied stress

In this first example, the focus is mainly on the effectiveness of the stabilization
technique developed. To this aim, three different cases are computed, all using the
same uniform coarse mesh of 50 linear elements. Only the applied stress is increased
in each of the cases, taking the values τ � 0.1, 1.0, and 10.0 GPa. Note that the last
value (10.0 GPa) is never encountered in a real physical situation, and is considered
here for the purpose of investigating the effectiveness of the stabilization technique
under extreme conditions. The corresponding initial mesh Péclet numbers are Pe �
0.2667, 2.6667, and 26.6667.

Figure 2.3 shows the results in terms of positive and negative dislocation densities
in blue and red respectively. The results obtained with the classical Bubnov-Galerkin
method are depicted in the left column, while the right column shows the results with
the stabilization technique. These numerical schemes are referred to as classical and
stabilized respectively.

Note that even in the first case depicted in the top row of Figure 2.3, for a small
applied stress with an initial Péclet number lower than unity, saw-tooth-like wiggles
appear in the regions of the spatial domain where dislocations densities are close to
zero. This effect pollutes the numerical approximation since the nodal densities at
some points are negative, which has no physical meaning. The numerical approx-
imation obtained with the stabilization scheme, as shown on the right, is smooth,
non-negative, and free of any oscillation.

The results for the second case with τ � 1.0 GPa are shown in the middle row
of Figure 2.3. In this case the initial mesh Péclet number is larger than one, and
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this range matches practical applications. On the left, corresponding to the classical
scheme, the oscillations are much larger than in the previous case, making the numer-
ical approximation completely useless for any application. This effect is due to the
fact that the convective character of the problem, evaluated in the initial condition,
has been increased by one order of magnitude. In other words, the true mesh Péclet
number in the pile-up regions is considerably higher than the estimate based on the
initial data. The corresponding stabilized result is shown on the right in the middle
row. It does not exhibit any wiggle or oscillation and the densities are non-negative
on the whole space domain. As expected, the width of the boundary layer is decreased
and dislocation densities reach higher values compared to the case with a lower applied
stress.

By increasing the initial convection even more by one order of magnitude, the ampli-
tude of the oscillations observed in the classical scheme continues to increase. These
oscillations become so severe that the obtained numerical approximations for both
positive and negative dislocation densities grow unboundedly. The corresponding plot
for this case, shown at the left on the bottom row, depicts the approximation at an
early time instance, the last at which a solution could still be obtained. Upon using
the stabilized scheme, the numerical approximation is again non-negative and free of
oscillations. Due to the high convection conjugated with the non-linearity, sharp in-
flections are obtained close to the boundary layers. Note that a solution obtained at
earlier time than the ones corresponding for lower stresses is here depicted. At this
time, the steady state has already been reached. This is due to the high applied stress
leading to a quick formation of dislocation pile-up at the boundaries of the spatial
domain.

2.4.2 Influence of the mesh size

The purpose of the second example is to illustrate the behavior of the stabilization
technique under mesh refinement. Therefore, the element size ` is progressively re-
duced and the applied stress is kept constant and equal to τ � 0.01 GPa. The choice of
this limited stress value in this example is to prevent the sudden formation of bound-
ary layers. The obtained numerical approximations at two different time instances are
analyzed.

In each plot in Figure 2.4, the positive and negative dislocation densities profiles
obtained with the classical Bubnov-Galerkin and the stabilized schemes appear to-
gether. Dashed lines are used for the classical Bubnov-Galerkin scheme, green for
positive dislocations and purple for negative ones. Approximations obtained with the
stabilized scheme are plotted with continuous lines, in blue for positive and red for
negative dislocations. The results were obtained using meshes of 10, 50, 100, and 500
elements with linear shape functions. The plots at the left are those corresponding to
t � 106 µs while the ones at the right are the corresponding snapshots at t � 107 µs.

Note that at t � 106 µs, the numerical approximations do not reveal any undesirable
behavior irrespective of the scheme used. This is due to the fact that a low convection
is present in the problem and more importantly, the fact that both dislocation densities
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(a) Classical, τ � 0.1 GPa, t � 106 µs. (b) Stabilized, τ � 0.1 GPa, t � 106 µs.

(c) Classical, τ � 1.0 GPa, t � 106 µs. (d) Stabilized, τ � 1.0 GPa, t � 106 µs.

(e) Classical, τ � 10.0 GPa, t � 102 µs. (f) Stabilized, τ � 10.0 GPa, t � 104 µs.

Figure 2.3: Comparison of positive and negative dislocation densities ρ� obtained with
the classical (left) and stabilized (right) scheme, increasing the applied stress τ from
top to bottom.

are far away from zero. Therefore, the effective diffusion (given by the first equation in
(2.45)), does not decrease significantly and the problem remains diffusion dominated.

As the simulation evolves until t � 107 µs (right column in Figure 2.4), it is observed
that dislocations pile-ups tend to form at the extremities of the spatial domain, thereby
causing a decrease of the corresponding densities at the opposite boundary. This
generates instabilities due to the reduction of the effective diffusion. This time all
the results obtained with the classical Bubnov-Galerkin scheme become unstable even
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when using the finest mesh, while the results obtained with the stabilized scheme all
remain stable.

Results for other stress levels are omitted since they do not provide other infor-
mation. Note that for some cases, none of the results obtained with the classical
Bubnov-Galerkin scheme were free of spurious oscillations, while those obtained with
the stabilized scheme were still smooth, non-negative, and free of oscillations.

These results confirm that the presented stabilization technique is effective when
needed. If spurious oscillations are not present because the problem is not dominated
by convection or the mesh is fine enough, the effect of the stabilization is negligible.

In terms of computing time, for the same discretization, the use of the stabilization
technique practically doubles the elapsed time with respect to the Bubnov-Galerkin
scheme for cases in which the latter still furnishes physically meaningful results. This
increase does not depend significantly on mesh refinement or on the applied stress
level. One nevertheless expects a significant gain in computational efficiency, because
using the stabilization technique allows to coarsen the mesh drastically compared with
the classical formulation.
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(a) ne � 10, t � 106 µs. (b) ne � 10, t � 107 µs.

(c) ne � 50, t � 106 µs. (d) ne � 50, t � 107 µs.

(e) ne � 100, t � 106 µs. (f) ne � 100, t � 107 µs.

(g) ne � 500, t � 106 µs. (h) ne � 500, t � 107 µs.

Figure 2.4: Positive and negative dislocations densities ρ� obtained with the classical
and stabilized scheme at two different time instances (left and right) with applied
stress τ � 0.01 GPa, increasing the number of elements (top to bottom).
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(a) ne � 10. (b) ne � 50.

(c) ne � 100. (d) ne � 500.

Figure 2.5: Comparison of positive dislocation density ρ� evolution obtained with the
stabilized scheme with applied stress τ � 0.1 GPa, increasing the number of elements
from left to right and from top to bottom.

2.4.3 Time evolution

In this last subsection, the results for a single problem, with τ � 0.1 GPa, are
presented in more detail. The goal here is to present numerical evidence of the char-
acteristics of the proposed stabilization technique. For clarity, only the results corre-
sponding to the positive dislocation density obtained with the stabilized scheme will be
shown. The same four meshes used previously are analyzed, but now for several time
instances. Snapshots from t � 102µs up to t � 107µs with one order of magnitude
increments will be taken, to be depicted on a logarithmic time scale.

The evolution of the positive dislocation density is depicted in Figure 2.5 for the four
meshes in each subfigure. As the mesh is refined, the sharp change at the dislocations
pile-up are resolved more accurately.

Correspondingly, Figure 2.6 depicts for each mesh the time evolution of the Péclet
number on a logarithmic scale. Note that at early stages of the computation, the Péclet
number is practically constant on the whole spatial domain and given by Equation
(2.47). Evidently, the Péclet number at early stages is reduced as the mesh is refined.
As the computation evolves the Péclet number grows on those parts of the spatial
domain where the positive dislocation density approaches zero. Since finer meshes
are more accurate in these regions, these finer meshes also reveal the highest Péclet
number values at the last computed time t � 107 µs.
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(a) ne � 10. (b) ne � 50.

(c) ne � 100. (d) ne � 500.

Figure 2.6: Comparison of Péclet number evolution with applied stress τ � 0.1 GPa,
increasing the number of elements from left to right and from top to bottom.

The same information is shown in Figure 2.7, where each plot corresponds to a
fixed time t with the Péclet number depicted on the whole spatial domain for the four
meshes. The left subfigure corresponds to time t � 102 µs. The Péclet number for
all the meshes is nearly constant, except at the boundaries with the finer mesh. This
is due to the mesh’s ability to resolve the boundary layers that start to emerge. The
middle subfigure confirms this. The right subfigure, corresponding to time t � 106 µs,
shows the tendency of the Péclet number to increase in those regions where the positive
dislocation density approaches zero values and to decrease at the opposite boundary
where the positive dislocation density grows, causing an increment of the effective
diffusion. Note that all the maximum values of the Péclet number have surpassed the
minimum Péclet number of the corresponding coarse mesh suggesting that the non-
linearity of the system has a strong influence on the stability properties. Simple mesh
refinement, which may become expensive from a computational viewpoint, cannot
provide a satisfactory answer to the stability problem.

Finally, the magnitude of the perturbation |β�| computed and used to stabilize
the problem at hand for the four different meshes is provided in Figures 2.8 and 2.9.
The magnitude of the required perturbation to get stability effectively vanishes as
the mesh is refined for early stages of the computation as can be seen in Figure 2.8.
As the computation evolves, refined meshes, able to resolve more accurately values

Numerical stabilization for multidimensional coupled convection-diffusion-reaction equations.

Applications to continuum dislocation transport.



28 Section 2.4. Computational assessment of the stabilization scheme

(a) t � 102. (b) t � 104. (c) t � 106.

Figure 2.7: Comparison of the Péclet number on the spatial domain for the four meshes
with applied stress τ � 0.1 GPa, increasing the time instance from left to right.

(a) ne � 10. (b) ne � 50.

(c) ne � 100. (d) ne � 500.

Figure 2.8: Comparison of the advection perturbation magnitude |β�| evolution used
to get stability with applied stress τ � 0.1 GPa, increasing the number of elements
from left to right and from top to bottom.

of positive dislocation density approaching zero, reduce further the effective diffusion
αpρq. Figure 2.9 also confirms the fact that simple mesh refinement will not solve the
instability problem by itself and more importantly, that the coefficient perturbation
necessary to stabilize the problem decreases upon mesh refinement.
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(a) t � 102. (b) t � 104. (c) t � 106.

Figure 2.9: Comparison of the advection perturbation magnitude |β�| on the spatial
domain for the four meshes with applied stress τ � 0.1 GPa, increasing the time
instance from left to right.

2.5 Conclusion and outlook

In this chapter a stabilization technique for the general steady state and linear
convection-diffusion-reaction equation with constant coefficients has been developed.
For the linear convection-diffusion case it has been explicitly demonstrated that the
proposed technique leads to unconditionally stable solutions via the fulfilment of the
discrete maximum principle, and that the stabilized scheme solution converges to
the classical Bubnov-Galerkin solution if the mesh Péclet number is small enough.
Although not shown in this chapter, the diffusion-reaction and the general convection-
diffusion-reaction case are also endowed with these two properties; which together
make the stabilized scheme convergent by the Lax equivalence theorem. Furthermore,
this stabilization technique is applicable when either the advective or the divergence
form has been used for the spatial discretization, making it highly flexible and general.

Although the dislocation density transport equations of interest in this chapter are
transient, non-linear, and with variable coefficients, the proposed stabilization scheme
has been successfully applied to these equations. Its effectiveness in stabilizing the
classical Bubnov-Galerkin scheme and consistency have both been demonstrated in
the numerical simulations performed. The effectiveness of the stabilization technique
remains unaffected when different types of models, as those presented in [21] or in [32],
are used, with constant or variable length scales. Moreover, the more commonly used
total and geometrically necessary dislocations densities can be easily obtained from
the positive and negative dislocations densities in a post-processing step.

It is noted that an error analysis could add a significant value to the proposed sta-
bilization technique and should be investigated as future work. It is also planned to
extend this stabilization technique to multidimensional configurations. Although the
present chapter is mainly focused on parallel edge dislocations, more complex disloca-
tion density transport models, such as those modeling screw and mixed dislocations
and other phenomena as annihilation, will be investigated as well.
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Chapter 3

Stabilization of Coupled
Convection-Diffusion-Reaction
Equations

Abstract

Partial differential equations having diffusive, convective and reactive terms ap-
pear in the modelling of a large variety of processes in several branches of science.
Often, several species or components interact with each other rendering strongly cou-
pled systems of convection-diffusion-reaction equations. Exact solutions are available
in extremely few cases lacking practical interest. Then, numerical approximation re-
mains the best strategy for solving these problems. The properties of these systems of
equations cause most traditional numerical methods to fail, with the appearance of vi-
olent and non-physical node to node oscillations in the solutions. Therefore, strategies
must be developed in order to obtain physically meaningful and numerically stable
approximations. Such stabilization techniques have been extensively developed for
the single equation case in contrast to the multiple equations case. The objective of
this chapter is to present a stabilization technique for coupled systems of convection-
diffusion-reaction equations. Several of its attractive characteristics are discussed,
providing evidence of its versatility and effectiveness through a thorough numerical
assessment.

keywords.- Numerical instability, Stabilized finite element method, Convection-diffu-
sion-reaction equations, Coupled systems.

This chapter is based on: Hernández H., Massart T.J., Peerlings R.H.J., and Geers M.G.D. 2016.
A Stabilization Technique for Coupled Convection-Diffusion-Reaction Equations. In preparation.
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3.1 Introduction

Partial differential equations including convection, diffusion, and reaction terms
arise naturally in many branches of engineering and science. Analytical solutions
of such equations are known in very few simple cases that generally lack practical
interest, even if they do provide valuable mathematical, physical, or computational
insights. Moreover, non-linearity, intricate boundary conditions, irregular geometries,
heterogeneity in the space and time dependence of the transport coefficients complicate
the situation even more, rendering the problem intractable by analytical tools. For
this reason, numerical approximation methods remain the best strategy for solving
such equations.

In recent decades, all well-known numerical techniques have been applied to solve
such convection-diffusion-reaction equations. Finite differences, finite volumes, finite
elements, spectral, or meshless methods, to name a few, are most common in the field.

These numerical techniques have been applied with different degrees of success.
Some of them have excelled for some specific problems, while not obtaining satisfac-
tory results, or even completely failing, for other problems. In this respect, a general
purpose numerical methodology does not seem to be available yet. The vast majority
of the above mentioned numerical methods are successful when convection, reaction,
or a combination of both acting together, are largely dominated by diffusion, tend-
ing towards a purely diffusive process. The situation is drastically changed when
either convection, reaction, or a combination of both overwhelms diffusion. In such
situations, numerical instability arises when diffusion becomes less predominant for
affordable meshes. The numerical approximations are usually plagued with spurious
oscillations near boundary and internal layers, and can exhibit negative values even if
the underlying partial differential equation only accepts non-negative solutions.

This stability problem is inherent to the numerical discretization scheme, and not
to the underlying partial differential equation. When the discretization is refined the
magnitude of the oscillations decreases or they even completely disappear, yielding a
smooth numerical approximation.

This suggests that the lack of numerical stability and the subsequent oscillations
appear because the discretization is too coarse to adequately capture all the physics of
the governing transport mechanisms. This can also be interpreted as a lack of richness
of the approximation space to fully capture the behaviour of the function underlying
the solution of the continuous model. In several cases, the refinement required to get
acceptable numerical approximations is so excessive that the approximation process
becomes prohibitive in computational terms.

Over the years, ad hoc discretization strategies or stabilization techniques have been
developed to overcome such difficulties. Finite difference method practitioners have
defined several techniques in this respect, such as upwinding schemes, the use of high
order schemes, or the use of fitted meshes [9, 25, 29, 52, 54]. Flux reconstruction,
total variation diminishing techniques, high order schemes, essentially non-oscillatory

Numerical stabilization for multidimensional coupled convection-diffusion-reaction equations.

Applications to continuum dislocation transport.



32 Section 3.1. Introduction

schemes, and their weighted version are now well established techniques in the finite
volume method community [68, 72, 76]. Streamline upwind Petrov-Galerkin, Galerkin
least-squares, discontinuous Galerkin schemes; bubble enrichment; algebraic sub-grid
scale approaches, spurious oscillations at layers diminishing techniques, and boundary
layer elements, among others, have been devised over the years in the finite element
method community [7, 11, 13, 44, 56, 60].

These techniques exhibit different degrees of success, and many of them have not
been designed for general purposes. Some are focused on the convection-diffusion case,
while others were developed for the diffusion-reaction case. In the finite difference and
the finite element method communities, most of the approaches use the advective form
of the partial differential equation [23, 24, 73, 87]. On the other hand, the divergence
form is preferred by the finite volume and spectral method communities [8, 26, 81, 82].
In view of the significant number of contributions dealing with these difficulties, one
may get the misleading impression that these instability problems have been fully
solved.

Yet, little attention has been paid to systems of convection-diffusion-reaction equa-
tions, although they also arise naturally in several branches of science such as bio-
mechanics [18], combustion [5], computer science [30], ecology [45], economy [6], epi-
demiology [84], finance [17], groundwater pollution [4], heat transfer [70], neuroscience
[3], physiology [37], seepage flow [71], solid mechanics [14] or turbulence [15]. The
reason for this immaturity is the lack of a maximum principle when going from a sin-
gle transport equation towards systems of coupled equations in the most general form
[62].

In a contribution by Abrahamson, Keller, and Kreiss [1], a stabilization technique
for systems of one dimensional convection-diffusion-reaction equations in steady state,
i.e. a system of ordinary differential equations, has been proposed and successfully
applied. This technique is a direct extension of a previously developed upwinding
scheme for first order derivative terms [65, 69, 74, 83].

Additional progress in the approximations for systems of convection-diffusion-reac-
tion equations until the late 1990’s has been mainly made by the finite difference
method community. The issue has been addressed by extending techniques previously
used for discretizing a single equation. The most representative approaches consist of
the use of upwind finite differences for the convective terms on layer adapted meshes
according to the construction proposed by Shishkin and Bakhvalov [29, 48]. In these
papers, theoretical developments have unravelled the conditions for a continuous max-
imum principle to be valid. In other cases compatibility conditions are derived and
used instead. For finite volumes, the strategies have been similar. Discontinuous and
high order approximations, upwinding and adaptive meshes were the most successful
techniques to deal with coupled equations [16, 58]. In the finite element method con-
text, streamline upwind Petrov-Galerkin, Galerkin least-squares, algebraic sub-grid
scale with high order elements together with shock capturing techniques have been
the most promising techniques [4, 5, 14]. In general, and within all these methodolo-
gies, the case of systems of equations has been traditionally tackled using techniques
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previously successful in the case of a single equation. The same guiding strategy is
followed in the present chapter.

The main aim here is to present a stabilization technique for a system of coupled
convection-diffusion-reaction equations able to resolve the main shortcomings of the
above mentioned stabilization techniques such as mesh fitting or the need to adapt
the mesh, the requirement of high order or discontinuous approximations and the in-
troduction of excessive diffusive up-winded differences. This methodology extends a
recently proposed approach for a single equation, described in [34], to a general system
of convection-diffusion-reaction equations. The methodology is conceptually based on
perturbing the original partial differential equation, whose discretized form on a par-
ticular discretization is on beforehand known to yield an unstable approximation, by
modifying its transport coefficients to obtain a well behaved numerical approximation
without altering the physics [7, 43]. The required modification or perturbation is op-
timally determined as the smallest possible one that still guarantees stability. These
perturbations are chosen in such a way that certain compatibility conditions analogous
to a maximum principle are satisfied. Once the computed perturbations are injected in
the classical Bubnov-Galerkin finite element method, they deliver smooth and stable
numerical approximations.

Applications to several coupled systems of partial differential equations in one di-
mension arising from different phenomena are presented. These results demonstrate
the use of the developed technique for simulating problems modeled by systems of
convection-diffusion-reaction equations with an affordable computational effort. Ex-
amples showing the reliability of the approach are presented through several thorough
and detailed numerical assessments.

The chapter is organized as follows. In Section 3.2 the basic terminology and nota-
tions are introduced. A particular effort has been made to homogenize the different
conventions used in the literature due to the variety of phenomena for which cou-
pled convection-diffusion-reaction equations are obtained. Subsequently, the classical
Bubnov-Galerkin finite element discretization is introduced in the most traditional way
and important issues on the treatment of the boundary conditions are discussed. Sec-
tion 3.3 is devoted to the development of a stabilization technique for a steady state lin-
ear system of convection-diffusion-reaction equations with constant coefficients in one
dimension. The particular case when the coupling coefficients vanish is discussed, at
which the proposed stabilization technique collapses to previously proposed techniques
designed for the case of a single equation. Unconditional stability and consistency of
the stabilization technique for the special case of a single convection-diffusion equation
is discussed. Section 3.4 assesses the stabilization technique through three numerical
examples. The first one is of the convection-diffusion type, while the second one is
of the diffusion-reaction type. Finally, the third problem is of convection-diffusion-
reaction type with not only boundary layers as in the previous problems, but also
internal layers. Finally, Section 3.6 presents the main conclusions of the chapter and
discusses some future developments to be considered.
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3.2 Problem definition and finite element discretiza-
tion

In all generality, consider a system of m conservation equations with reaction terms
of the form

ρpq
Buq
Bt

�
B

Bx
pFpq � γpquq � fp, (3.1)

where the use of repeated indices implies the traditional summation convention. The
main variables to be approximated, uq for q � 1, 2, � � � ,m, are the physical quantities
to be transported, Fp are their corresponding fluxes, and fp P R are the source terms,
both for p � 1, 2, � � � ,m. The reaction coefficients γpq P R, for p, q � 1, 2, � � � ,m will
be referred to as direct when p � q and as coupled when p � q. Finally, ρpq P R� are
the mass coefficients, which are assumed to vanish when p � q.

The fluxes are composed of diffusive and convective contributions, i.e.

Fp � �αpq
Buq
Bx

� βpquq. (3.2)

Here αpq P R� are the diffusion coefficients and βpq P R are the convection coefficients.
These diffusion and convection coefficients will also be referred to as direct or coupled
using the above mentioned convention. Throughout this section all coefficients will be
regarded as constants.

Substituting the flux given by Equation (3.2) in the general conservation Equation
(3.1) leads to

ρpq
Buq
Bt

�
B

Bx

�
�αpq

Buq
Bx

� βpquq



� γpquq � fp. (3.3)

which is the divergence form of the conservation equation due to the fact that integra-
tion over the whole domain involves, via the divergence theorem, the total flux across
the boundary.

Since all the physical coefficients are regarded as constants, it is possible to expand
the spatial derivative on the terms composing the flux to obtain

ρpq
Buq
Bt

� αpq
B2uq
Bx2

� βpq
Buq
Bx

� γpquq � fp. (3.4)

which is in turn the advective form because of the direct interpretation of the first
order spatial derivative term representing convection.

With these conventions and assumptions it is possible to rewrite the system of
equations (3.4) in matrix form as

M 9u�Au2 �Bu1 �Gu � f , (3.5)

where the superimposed dot implies differentiation in time while the prime denotes
a derivative with respect to the spatial coordinate. M � Diagpρ11, ρ22, � � � , ρmmq
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is the matrix of mass coefficients and A, B , and G are the matrices of diffusion,
convection, and reaction coefficients, while u � ru1, u2, � � � , ums

T is the vector of
unknowns. Finally, the source vector f � rf1, f2, � � � fms

T gathers the m source terms.
Care must be taken not to confuse the above matrices with the finite element matrices
to be introduced afterwards.

For the sake of clarity in the notation, a single weighting function w for all the m
equations is introduced and used in what follows. Notwithstanding, it is important to
remark that a different weighting function can be used for each equation. Multiplying
Equation (3.1) by such a weighting function w, and integrating over the whole spatial
domain, the following weighted residuals form is obtained»

Ω

wρpq
Buq
Bt

dΩ�

»
Ω

w
B

Bx
pFpq dΩ�

»
Ω

wγpquqdΩ �

»
Ω

wfpdΩ, (3.6)

Integrating by parts the second term in the left hand side yields»
Ω

wρpq
Buq
Bt

dΩ�

»
Ω

Bw

Bx
FpdΩ� rwFpsΓ �

»
Ω

wγpquqdΩ �

»
Ω

wfpdΩ. (3.7)

It is emphasized again that this way of applying integration by parts is not the standard
in finite element based solutions in the fluids dynamics community. This choice, i.e.
integration by part performed on the whole flux term, allows one to handle both
essential and natural boundary conditions for convection-diffusion-reaction problems
in a straightforward manner.

To discretize Equation (3.7), the weighting function w and the variable up are ex-
pressed as linear combinations of their corresponding nodal values using interpolation
functions Wk and Pk associated with the ne nodes within each finite element as follows

w �
nȩ

k�1

Wkwk and up �
nȩ

k�1

Pkpupqk. (3.8)

Requiring the result to hold for all wk leads to a global discretized system of the form

M pq 9uq � pDpq �C pq �Rpqquq � f p, (3.9)

where M pq are the global mass matrices, Dpq the global diffusion matrices, C pq are
the global convection matrices and Rpq are the global reaction matrices. Again, it
is emphasized that these matrices differ from those presented in Equation (3.5), and
the same care should be taken with the unknowns and source term vectors. Nodal
values of the transported quantities to be approximated are sorted in the m vectors

uq �
�
u
p1q
q , u

p2q
q , � � � , u

pn�1q
q , u

pnq
q

�T
(for q � 1, 2, � � � ,m), with n being the total num-

ber of nodes in the finite element discretization. Furthermore, these m numerical
approximations can be sorted in a single degree-of-freedom vector as

u �
�
u
p1q
1 , u

p2q
1 , � � � , u

pnq
1 , u

p1q
2 , u

p2q
2 , � � � , u

pnq
2 , � � � , up1qm , up2qm , � � � , upnqm

�T
, (3.10)
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which will be simply referred as the numerical approximation. Finally f p takes into
account the m source terms fp and boundary conditions.

The stability problem already highlighted in Chapter 2 when working with a single
convection-diffusion-reaction equation is inherited to the multiple equations case when
using a Bubnov-Galerkin approach for each of the m equations, i.e. with Pk �Wk.

3.3 Stabilization by coefficient perturbation

The stability problems first described in Section 2.3.1 for the single equation case are
caused by the fact that the classical Bubnov-Galerkin method applied to the consid-
ered partial differential equation does not satisfy the discrete maximum principle. This
principle is the discrete counterpart of the continuous maximum principle, to be satis-
fied by any feasible solution of the underlying differential equation [12, 43]. However,
this maximum principle can be only rigorously established for the case of a single dif-
ferential equation. When tackling systems of differential equations, barrier functions
or compatibility conditions should be established and used instead [47, 48, 52, 54].
Irrespective of the problem considered, a stabilization technique is required in order
to obtain physically meaningful approximations. In the present chapter, the above
mentioned barrier functions or compatibility conditions will not be used since their
derivation is beyond the scope of the present chapter. Therefore, the only guiding
criterion for the stabilization technique development will be the removal of spurious
oscillations. Thus, interior domain values of the approximated solutions will be al-
lowed to be larger or smaller than the corresponding boundary values due to the fact
that coupling terms between unknowns can be viewed as sources or sinks.

3.3.1 Extension to systems of coupled equations

In this section, the proposed stabilization technique for a single convection-diffusion-
reaction equation is heuristically extended to the case of multiple coupled equations.
This extension is built, as for the single equation case, on the injection of the analytical
solution of the linearised, homogeneous, and steady state version of the problem at
hand into the numerical stencil obtained by the finite element discretization. This
injection process yields a system of algebraic equations for each differential equation
composing the coupled system. The determination of the coefficient perturbations is
carried out by solving these systems of algebraic equations.

The development of the stabilization technique will make use of a simplified Dirichlet
boundary value problem in steady state which reads as follows

d

dx

�
�αpq

duq
dx

� βpquq



� γpquq � fp in Ω � p0, 1q, (3.11)

up px � 0q � uLp and up px � 1q � uRp . (3.12)

The discretization of the system of differential equations by the finite element method
using a uniform mesh generates p � 1, 2, � � � ,m numerical stencils, one for each of
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the p differential equations contained in system (3.11). These stencils take the same
general form

�
αpq
`

�
upi�1q
q � 2upiqq � upi�1q

q

	
�
βpq
2

�
upi�1q
q � upi�1q

q

	
�
γpq`

6

�
upi�1q
q � 4upiqq � upi�1q

q

	
� `f piqp ,

(3.13)

which correspond to the ri� pp� 1qms-th row of the system of algebraic equations
produced by the finite element method after assembly.

To obtain the analytical solution of the system (3.11), m new variables are intro-
duced in order to convert the system of m second-order differential equations into a
system of 2m first-order differential equations. These new variables are defined as

uj�m �
duj
dx

for j � 1, 2, � � � ,m. (3.14)

After substituting Equation (3.14) in the system given by Equation (3.11) for the
homogeneous case, i.e. with fp � 0 for p � 1, 2, � � � ,m, the aforementioned system of
2m first-order differential equations is obtained. It can be written in matrix form as

du

dx
� Ku, (3.15)

with u � ru1, u2, � � � , u2ms
T and the 2m� 2m matrix K defined as

K �

�
I 0
0 A

��1 �
0 I
G B

�
, (3.16)

where I is the m �m identity matrix and 0 is the m �m null matrix. The m �m
matrices A, B , and G are the diffusion, convection and reaction matrices defined in
Equation (3.5).

With these conventions, the analytical solution of the system given by Equation
(3.15) can be written as

u � c1e
λ1xvp1q � c2e

λ2xvp2q � � � � � c2me
λ2mxvp2mq, (3.17)

where λk and vpkq are the 2m eigenvalues and eigenvectors of the matrix K , i.e. they
satisfy Kvpkq � λkv

pkq for k � 1, 2, � � � , 2m. The constants ck only depend on the
boundary conditions given by (3.12). Thus, the q-th solution of the system of equations
(3.11) can be written as

uqpxq �
2m̧

k�1

ckv
pkq
q eλkx, (3.18)

where vpkqq is the q-th component of the eigenvector associated to the k-th eigenvalue.
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The q-th component of the analytical solution can therefore be evaluated at the
three nodes defining the finite element stencils (3.13), i.e. at xi�1, xi and xi�1:

uqpxiq � upiqq �
2m̧

k�1

ckv
pkq
q eλkxi , and uqpxi�1q � upi�1q

q �
2m̧

k�1

ckv
pkq
q eλkxie�λk`.

(3.19)
These expressions for upi�1q

q , upiqq , and u
pi�1q
q are injected in the p perturbed finite

element stencils resulting from the discretization of the system of differential equa-
tions (3.11). Such perturbed stencils have exactly the same form as the stencils given
by (3.13) but using the perturbed coefficients α̃pq, β̃pq, and γ̃pq instead of the corre-
sponding original coefficients αpq, βpq, and γpq. After taking into account the coupling
through the q index, each of the p perturbed stencils can be written as

α̃pq
`

2m̧

k�1

ckv
pkq
q eλkxi r1� coshpλk`qs�

β̃pq
2

2m̧

k�1

ckv
pkq
q eλkxi sinhpλk`q� (3.20)

γ̃pq`

6

2m̧

k�1

ckv
pkq
q eλkxi r2� coshpλk`qs � 0.

Expression (3.20) represents m equations (for p � 1, 2, � � � ,m), each one corresponding
to the p-th differential equation in the system (3.11). Expansion of the q � 1, 2, � � � ,m
index in each of these m equations makes clear that the unknowns of the equations
included in Expression (3.20) are the m2 perturbed diffusion coefficients α̃pq, the
m2 perturbed convection coefficients β̃pq, and the m2 perturbed reaction coefficients
γ̃pq, each for p, q � 1, 2, � � � ,m. Considering the m equations with 3m2 unknowns
in Equation (3.20), attention is now focused to the summation over k. The k �
1, 2, � � � , 2m index corresponds to the number of integration constants ck, eigenvalues
λk, and eigenvectors vpkq. The constants ck depend only on the boundary conditions
in (3.12). These boundary conditions are first chosen in such a way that c1 � 0 and
c2 � c3 � � � � � c2m � 0, generating m algebraic equations (for p � 1, 2, � � � ,m), for
the particular value k � 1. Subsequently, the boundary conditions are modified in
order to get c1 � 0, c2 � 0, and c3 � c4 � � � � � c2m � 0, generating this time another
m algebraic equations for the value k � 2. This process is continued until k � 2m,
generating m algebraic equations for each particular value of the k index. Note that
after carrying out this process the product ckeλkxi can be eliminated since it appears
as a common factor once a particular k has been fixed. Thus, it is possible to write
the resulting 2m2 system of algebraic equations in a compact form as

α̃pq
`
vpkqq r1� coshpλk`qs �

β̃pq
2
vpkqq sinhpλk`q �

γ̃pq`

6
vpkqq r2� coshpλk`qs � 0, (3.21)

where the eigenvalues λk and their corresponding eigenvectors vpkq of the K matrix
given by Equation (3.16) depend only on the transport coefficients and therefore can be
easily determined through numerical computation. In order to solve this system of 2m2
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equations with 3m2 unknowns, m2 transport coefficients should be kept unperturbed,
allowing to solve (3.21) for the remaining 2m2 perturbed coefficients.

Note that the system of two equations obtained in the previous chapter while devel-
oping the presented stabilization technique for the single equation case and given by
(2.28-2.29) is indeed the special case of (3.21) with m � 1. The corresponding 2 � 2
matrix K is now given by

K �

�
1 0
0 α

��1 � 0 1
γ β

�
, (3.22)

whose eigenvalues are exactly the same as the roots of the characteristic polynomial
associated to the second-order convection-diffusion-reaction equation as given by Equa-
tion (2.25). This observation partially justifies the heuristic process adopted in order
to extend the stabilization technique from the single equation case towards the case
of systems containing m coupled equations. Additional arguments will be forwarded
in the next section.

3.3.2 Particularization to uncoupled sets of equations

The goal of this section is to asses the validity of the extension of the presented
stabilization technique to the multiple equations case. For this purpose, the special
case when all coupling coefficients vanish, i.e. when αpq � βpq � γpq � 0 for p � q, is
considered. In this case the eigenvalues of the K matrix are given by

λ2p�1,2p �
βpp

2αpp
�

d�
βpp

2αpp


2

�
γpp
αpp

, (3.23)

and their corresponding eigenvectors are in turn given by

vp2p�1,2pq �

�
λ2p�1,2pαpp � βpp

γpp



êppq � êpp�mq, (3.24)

where the vectors êpiq for i � 1, 2, � � � , 2m have 1 in their i�th component and zeros
otherwise.

Since αpq � βpq � γpq � 0 for p � q, their corresponding perturbations are, for
simplicity, assumed to vanish, i.e. α�pq � β�pq � γ�pq � 0 for p � q. After substituting

q � p in the expression (3.21) and factorizing the common factor vpkqp , the system of
equations can be compactly written as

vpkqp

#
α̃pp
`
r1� coshpλk`qs �

β̃pp
2

sinhpλk`q �
γ̃pp`

6
r2� coshpλk`qs

+
� 0. (3.25)

Note that only the p-th and pp � mq-th entries of the p2p � 1q-th and the 2p-th
eigenvectors do not vanish, i.e. v

p2p�1,2pq
p � 0 and v

p2p�1,2pq
p�m � 0. Thus, only the

r2pp� 1qm� 2p� 1s-th and r2pp� 1qm� 2ps-th equations of the linear system are
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non-trivial. All the other equations generated by (3.25) for k � 1, 2, � � � , 2m provide
the trivial equality 0 � 0. Therefore the linear system consisting originally of 2m2

equations is reduced to only 2m equations with 3m unknowns, i.e. the perturbed
coefficients α̃pp, β̃pp, and γ̃pp. Furthermore, it is possible to write these equations by
pairs after substituting k � 2p�1 and k � 2p and eliminating the common factor vpkqp

as

α̃pp
`
r1� coshpλ2p�1`qs �

β̃pp
2

sinhpλ2p�1`q �
γ̃pp`

6
r2� coshpλ2p�1`qs � 0, (3.26)

α̃pp
`
r1� coshpλ2p`qs �

β̃pp
2

sinhpλ2p`q �
γ̃pp`

6
r2� coshpλ2p`qs � 0. (3.27)

Note that these two equations well resemble the two Equations (2.28-2.29) obtained
when treating the single differential equation case, i.e. when m � 1. This allows to
conclude that when applied to an uncoupled system of convection-diffusion-reaction
equations, the extended stabilization technique simplifies to m independent problems,
and stabilizes them as done in the previous chapter.

3.4 Applications and computational assessment

This section presents three numerical examples to illustrate and assess the efficiency
and consistency of the developed stabilization technique. Its main goal is to demon-
strate the ability of the presented stabilization technique to successfully accommodate
and handle different types of problems, independently of the underlying physics for
which the system of differential equations has been established.

This goal is pursued by presenting a thorough and detailed analysis of the numerical
results obtained for three examples taken from different references. In all cases the con-
vection and reaction coefficients have been taken exactly the same as those presented
in the original reference. Except in the last example, all boundary conditions have
also been taken of the same type as in the original references. The modification made
in the last problem is for the sake of uniformity in the assessments presented here, and
more importantly because the boundary conditions chosen here more easily trigger the
development of sharp boundary layers, making the problem more challenging for the
stabilization technique. Thus the problems elaborated in the present assessment are
all of the Dirichlet type. The domain considered always has a unit length.

Only the parameter ε controlling the amount of diffusion and the descretization size
` are modified during this study. Once these are set for a particular problem they
are not changed, i.e. for a particular simulation the diffusion parameter is constant
over the whole domain discretized with a uniform mesh. The parameter ε is always
chosen as ε � 10�j with j � 0, 1, 2, ... thus, as j increases the problem becomes
less dominated by diffusion, and therefore its numerical approximation becomes more
prone to numerical instabilities.

Regardless of the use of the presented stabilization technique, once the system of
m differential equations has been discretized, a system of mn �mn linear algebraic
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equations has to be solved. For this purpose the iterative BiCGStab method has been
used, considering future multidimensional extensions of the framework leading to large
and sparse systems [77]. In all cases, the maximum number of allowed iterations is
set equal to the number of nodes in the finite element mesh, although the iteration
process is stopped as soon as ||r pkq||{||b||   εs � 10�6 is reached, with r pkq the k-th
residual vector and b the right hand side vector. No preconditioning is used.

3.4.1 Convection-diffusion system

In this section, attention is focused on a problem having no reaction terms but a full
convection matrix, i.e. containing cross convection terms. It has been chosen here to
perturb only the diagonal entries of the diffusion matrix in order to capture the effect
of the stabilization technique in a single coefficient perturbation easy to scrutinize.
Since an analytical solution is available for this problem, an error analysis can be
carried out to elucidate the effectiveness of the stabilization scheme.

This problem is taken from [55], where it was treated using upwind finite differences
on a Shishkin mesh. It is the simplest case among all examples solved in the present
chapter , where all the diffusion coefficients are equal and the convection coefficients
and source terms all taken as constants.

The system consisting of m � 3 differential equations reads as follows

� ε

�
� 1 0 0

0 1 0
0 0 1

�
�
�
� u1

u2

u3

�
�
xx

�

�
� 3 �1 �1
�1 4 �2
�1 �2 4

�
�
�
� u1

u2

u3

�
�
x

�

�
� �4

11
�7

�
� , (3.28)

with boundary condition at the left upx � 0q � r�1, 4,�1sT , and at the right

upx � 1q � e�1{ε

�
� 1

1
1

�
�� e�4{ε

�
� �2

1
1

�
�� e�6{ε

�
� 0

2
�2

�
��

�
� 1
�2

0

�
� . (3.29)

Note that the latter boundary condition depends on the diffusion parameter.

The previously mentioned analytical solution is available from [55] and reads

upxq � e�x{ε

�
� 1

1
1

�
�� e�4x{ε

�
� �2

1
1

�
�� e�6x{ε

�
� 0

2
�2

�
��

�
� x

�2x
x� 1

�
� . (3.30)

Figure 3.1 shows the numerical approximations in terms of u1, u2, and u3. The
results obtained with the classical Bubnov-Galerkin method are depicted in the left
column, while the right column shows the results obtained with the stabilization tech-
nique. These numerical schemes are respectively referred to as classical and stabilized.
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Note in the first row of Figure 3.1; for ε � 1, that, having diffusion coefficients
αpp � 1 for p � 1, 2, 3, the solutions of the classical and stabilized schemes are prac-
tically identical. Moreover, the solutions obtained using different meshes are practi-
cally indistinguishable from each other. Such smooth behaviour was expected since
that even for the coarsest discretization, the Péclet numbers are all smaller than one
Pe � r0.15, 0.2, 0.2sT .

The situation is slightly changed when moving to the next row; for ε � 0.1, in which
oscillations start to appear in the approximation obtained by the coarsest discretization
with the classical scheme. This time the Péclet numbers are Pe � r1.5, 2, 2sT ; and
therefore such an oscillatory behaviour could have been expected. It disappears for
the next finer mesh with corresponding Péclet numbers Pe � r0.4687, 0.625, 0.625sT .
In the right column the effectiveness of the proposed stabilization scheme in removing
the spurious oscillations, even for the coarsest mesh, is illustrated. The main features
in the boundary layers are also captured, although the approximations obtained using
the coarsest meshes differ from the finest meshes approximations due to the limited
resolution (lack of nodes) in the boundary layer region.

Moving to the last row in the left column, it is obvious that the amplitude of the
oscillations increases as the problem gets more dominated by convection. They now
even plague approximations on the finest mesh. On the other hand, the approxima-
tions obtained by the stabilized scheme, in the right column, are all free of spurious
oscillations. They adequately capture the boundary layers and abrupt changes in the
solutions even for the coarsest mesh for the whole range of diffusion coefficients tested.

The analytical solution of the problem can be used to asses the numerical approxi-
mation error. This analysis is done using the maximum norm, which is usually consid-
ered the most adequate for singularly perturbed problems such as convection-diffusion-
reaction equations with weak diffusion [25, 53]. The analytical solution ua is evaluated
at the same points for which the numerical approximation on a mesh having n nodes,
denoted by un, is available. Thus the numerical approximation error is given by

En � ||ua � un||8. (3.31)

This numerical approximation error En is shown in Figure 3.2 as a function of the
number of nodes in the finite element mesh. This is done for all values of the diffusion
parameters tested for the current problem. Dashed lines are used for the results
obtained with the classical scheme, while continuous lines are used for the stabilized
scheme.

Note that the darkest line in Figure 3.2, corresponding to the largest diffusion param-
eter ε � 1, exhibits second order convergence in the coarsest meshes range. As soon as
the discretization is sufficiently refined, n � 100, mesh invariance is established, where
round-off errors start to dominate. Note also that the error of the stabilized scheme is
always lower than its classical counterpart, precisely in the second order convergence
range. It can be argued that this fact is caused by the (even weak) presence of convec-
tive terms, for which the classical scheme entails instabilities. Note the increase of the
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approximation error for ε � 1 when going from the penultimate to the last discretiza-
tion refinement level and exclusively observed for the stabilized scheme. It is presumed
that such increase of the approximation error is due to the ill-conditioning introduced
in Equation (3.21) by the evaluation of the hyperbolic functions. For instance, in this
convection-diffusion problem, with γpq � 0 and thus γ̃pq � 0 for p, q � 1, 2, 3, Equation
(3.21) is reduced to

α̃pq
`
vpkqq r1� coshpλk`qs �

β̃pq
2
vpkqq sinhpλk`q � 0, (3.32)

which, for any λk � 0, becomes trivial in the limit when ` Ñ 0 since coshpλk`q Ñ 1
and sinhpλk`q Ñ 0, yielding an indetermination. A practical strategy to prevent such
a drawback is still under development.

While decreasing the diffusion parameter, going towards brighter lines, one can
notice that the second order convergence and mesh invariance ranges are shifted to
the right, implying that as the problem becomes more dominated by convection coarse
meshes do not have the ability to resolve the solution features any more. The stabilized
scheme properly captures these features, like boundary layers, supported by the fact
that the associated error is lower than the error obtained with the classical scheme.

The last case, ε � 10�4, deserves special attention. For this problem, mesh re-
finement does not help in reducing the error while using either the classical or the
stabilized scheme, until very fine meshes are used. Further refinement is not feasible
in terms of computational cost, and more importantly does not improve accuracy. In
order to elucidate the latter issue, let’s evaluate the most conservative spectral condi-
tion number estimate, obtained for a single pure diffusive equation, i.e. κ2 � O

�
h�2

�
[63]. In the present case h�2 � 109 for the finest mesh. This leads to a linear sys-
tem with a huge condition number, the solution of which can be severely polluted
by rounding errors [67, 78]. Obviously, this problem is of a different nature and also
affects any stabilization method.

Finally, Figure 3.3 shows the diffusion perturbations for the first equation, i.e. for
u1, as a function of the discretization size for several values of the diffusion coefficient.
As expected, the perturbations automatically increase as the problem becomes more
dominated by convection. This is reflected by the fact that the brighter lines, which
represent problems more dominated by advection, are always above the darker lines,
which in turn represent diffusion dominated problems. More importantly, this plot re-
veals that the perturbations decrease quadratically as the mesh is refined, demonstrat-
ing the consistency of the proposed stabilization technique. The unexpected change in
the slope for the line corresponding to the case with ε � 1 when going from the penulti-
mate to the last discretization refinement level is attributed to the same ill-conditioning
introduced by the evaluation of the hyperbolic functions discussed above.

3.4.2 Diffusion-reaction system

Next, a diffusion-reaction type problem is considered. This problem, originally pre-
sented in [52], introduces two new characteristics: the reaction and source coefficients
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(a) Classical, ε � 10�0, (b) Stabilized, ε � 10�0,

(c) Classical, ε � 10�1, (d) Stabilized, ε � 10�1.

(e) Classical, ε � 10�2, (f) Stabilized, ε � 10�2.

Figure 3.1: Numerical approximations obtained using different discretizations, darkest
for the coarsest mesh consisting of n � 10 nodes towards brightest for the finest mesh
consisting of n � 10000 nodes, with decreasing diffusion from top to bottom, for the
classical (left) and stabilized (right) schemes.

are dependent on the spatial coordinate and the diffusion coefficients differ. Even if
the spatial variability of the coefficient is mild, it allows to assess the proposed sta-
bilization technique in handling common difficulties faced by traditional stabilization
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Figure 3.2: Numerical approximation error for various diffusion coefficients and mesh
sizes. Dashed lines for the classical scheme and continuous lines for the stabilized
scheme for ε � 10�j with j � 0, 1, 2, 3, 4, as a function of the number of nodes in the
mesh.

Figure 3.3: Diffusion perturbation required to achieve stability for various diffusion
coefficients with ε � 10�j with j � 0, 1, 2, 3, 4, as a function of the number of nodes
in the mesh.
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techniques [1]. Strictly speaking, this characteristic is not a serious difficulty since,
before discretization, the differential equations can be scaled in such a way that the
previous case, (diffusion matrix equalling a scalar multiplied with the identity matrix)
is recovered. However, this scaling may not be desired if the original physical model
is to be preserved. Again, the choice was made to compute only the direct diffusion
perturbations.

The system consisting of two differential equations is given by

�

�
ε 0
0 1

� �
u1

u2

�
xx

�

�
2px� 1q2 �p1� x3q

�2 cospπx{4q 2.2e1�x

� �
u1

u2

�
�

�
2ex

10x� 1

�
, (3.33)

with homogeneous Dirichlet boundary conditions at both ends.

Figure 3.4 shows in each plot the numerical approximations obtained using different
discretizations, varying the diffusion parameter row by row. The classical results are
depicted in the left column and the stabilized results in the right column.

As expected, the classical and stabilized results are practically identical on the first
row, corresponding to the diffusion dominated case. When reducing the diffusion
parameter by two orders of magnitude, oscillations start to appear in the numerical
approximations in the classical scheme with the coarsest mesh. The stabilized scheme
(right column) effectively removes the oscillations. Moreover it recovers the same
numerical approximation irrespective of the mesh used.

By moving to the third row, more oscillations appear in the classical scheme since
the problem is more dominated by reaction. Even some of the finest meshes show
irregularities near the boundary layers. The corresponding numerical approximations
obtained with the stabilized scheme are free of spurious oscillations and adequately
capture the sharp changes at the boundary layers. It is important to emphasize that
mesh invariance is confirmed despite the high reactive character of the problem at
hand.

Note that, since the perturbations of the coefficients are computed in each element,
the proposed stabilization scheme is able to handle spatially heterogeneous transport
coefficients. This is particularly important when dealing with time dependent coeffi-
cients or even with non-linear transport equations. This same feature allows handling
variable mesh size, making the stabilization technique highly versatile and flexible.

3.4.3 Convection-diffusion-reaction system

In the final example, a general system involving all transport mechanisms is included.
Approaching such a challenging problem involving convection, diffusion and reaction
is precisely the main goal in developing the presented stabilization technique.
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(a) Classical, ε � 10�1. (b) Stabilized, ε � 10�1.

(c) Classical, ε � 10�3. (d) Stabilized, ε � 10�3.

(e) Classical, ε � 10�5. (f) Stabilized, ε � 10�5.

Figure 3.4: Numerical approximations obtained using different discretizations, darkest
for the coarsest mesh consisting of n � 16 nodes towards brightest for the finest mesh
consisting of n � 4096 nodes, with decreasing diffusion from top to bottom, for the
classical (left) and stabilized (right) schemes.

The problem considered was originally defined and solved using an upwind finite
difference scheme in [10]. It considers a case in which the diffusion matrix is isotropic,
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and reads

�
ε

2

�
� 1 0 0

0 1 0
0 0 1

�
�
�
� u1

u2

u3

�
�
xx

�

�
� r1 0 0

0 r2 0
0 0 r3

�
�
�
� u1

u2

u3

�
�
x

� � � �

� � � �

�
� 2µ1 �2µ1 0
�µ2 µ1 � µ2 �µ1

0 �2µ2 2µ2

�
�
�
� u1

u2

u3

�
� �

�
� 0

0
0

�
� . (3.34)

This time, the convection coefficients are piece-wise constant and given by

rk �

#
pk � 1qpλ1 � λ2q � c if 0 ¤ x ¤ b

pk � 1qλ1 � c if b   x ¤ 1
. (3.35)

The original boundary conditions have been modified for consistency with the previous
problems and to generate boundary layers challenging the stabilization scheme. They
have been taken as upx � 0q � r0.25, 0, 0.1sT and upx � 1q � r0, 0, 0sT . All diffusion
and discretization parameters are the same as in the previous problem. The parameters
in the convection and reaction matrices are taken µ1 � 1, µ2 � 0.5, λ1 � 1, λ2 � 0.4,
c � 1.2, and b � 0.3. Evaluation of the convection coefficients on the two different
spatial regions yields: rp0 ¤ x ¤ 0.3q � r�1.2, 0.3, 1.8sT for the left region and
rp0.3   x ¤ 1.0q � r�1.2,�0.2, 0.8sT for the right region. Note that the abrupt
change in the last component relates to its magnitude, while the convection direction
remains unchanged. In fact, the variation is more drastic in the second component,
which changes its sign. Therefore, in addition to boundary layers, internal layers are
also expected.

Figure 3.5 shows the numerical approximations in the same format as previously. In
the diffusion dominated case, in the first row, the classical and stabilized results are
practically identical. Note that u1 is convected towards the left since its corresponding
convection coefficient is negative on the whole spatial domain while u3 is convected
to the opposite direction because its convection coefficient is positive on the whole
domain. Thus u1 and u3 exhibit boundary layers at the left and right boundaries
respectively. The situation is drastically different for u2 since its boundary values
are the same and its convection coefficients have opposite signs in the two different
spatial regions, pointing towards the interior of the domain. Therefore, any quantity
of u2 present in the spatial domain, and generated through the reaction terms, will be
transported to the point x � b in which the convection coefficient changes sign. This
generates a double internal layer for u2 itself, but additionally could generate internal
layers for u1 and u3 through the reaction coupling.

The above mentioned phenomena are more pronounced when moving to the next
row, in which the diffusion has been weakened by two orders of magnitude. From these
diffusion values, the approximations obtained with the classical scheme are plagued
by instabilities for the coarsest meshes. The stabilized scheme solutions are free of
spurious oscillations and adequately capture the boundary and internal layers. Moving
to the third row, the oscillations in the classical results are so violent that at first sight
all numerical approximations are useless, regardless of the mesh used. This is not the
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case for the stabilized scheme, since all of them still well approximate the solution of
the problem at hand.

3.5 Comparison with other techniques

The main objective of this section is to compare the performance of the presented
stabilization technique based on coefficient perturbation to other well-known stabiliza-
tion techniques already available in the literature. This comparison is carried out with
respect to the Streamline Upwind Petrov-Galerkin [7], Galerkin Least-Squares [40],
and Sub-Grid Scales [39] techniques, which will be referred in what follows by their
respective acronyms SUPG, GLS, and SGS. These stabilization techniques have been
proposed independently, although they have all been presented in a comprehensive
manner in [13, 14, 23]. For details see these references.

The comparison will be carried out using the vector form of the general convection-
diffusion-reaction equation (3.4) in steady state. The following transport operators
are introduced

LD puq � �
d

dx

�
A
du

dx



, LC puq � B

du

dx
, and LR puq � Gu, (3.36)

where the sub-indices D, C, and R refer to diffusion, convection, and reaction respec-
tively. It is possible to gather these three transport operators in a single operator L.
By doing so, it is possible to express Equation (3.4) in steady state as

L puq
def
� LD puq �LC puq �LR puq � f , (3.37)

and define its associated residual as

R puq
def
� L puq � f . (3.38)

In order to discretize Equation (3.37) by finite elements via the weighted resid-
ual statement, m weighting functions, one for each of the m coupled convection-
diffusion-reaction equations, are introduced and stored in a single vector as w �
rw1, w2, � � � , wms

T . After multiplying Equation (3.37) by wT and integrating over
the whole domain one obtains the classical Bubnov-Galerkin scheme, known to be
unstable when either convection, reaction or a combination of both dominate over
diffusion. Therefore, a stabilizing term is introduced in order to remedy such insta-
bilies. After the introduction of this stabilizing term the weighted form of the system
of convection-diffusion-reaction equations can be written in all generality as

»
Ω

wTL puq dΩ�
nȩ

e�1

»
Ωpeq

PT pwq τR puq dΩpeq �

»
Ω

wTf dΩ. (3.39)

where P is a differential operator applied to the weighting functions whose particular
definition depends on the stabilization technique used as discussed below. The m�m
matrix τ contains the stabilization parameters. Finally R is the residual already
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(a) Classical, ε � 10�1. (b) Stabilized, ε � 10�1.

(c) Classical, ε � 10�3. (d) Stabilized, ε � 10�3.

(e) Classical, ε � 10�5. (f) Stabilized, ε � 10�5.

Figure 3.5: Numerical approximations obtained using different discretizations, darkest
for the coarsest mesh consisting of n � 16 nodes towards brightest for the finest mesh
consisting of n � 4096 nodes, with decreasing diffusion from top to bottom, for the
classical (left) and stabilized (right) schemes.
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defined by Equation (3.38). Note that, for the sake of simplicity in the exposition, no
integration by parts has been applied in Equation (3.39) and therefore fluxes on the
boundary have not been incorporated. Moreover, the addition of the stabilization term
as given here is not affected by the form (advective or divergence) of the transport
equation to be discretized. Also note that such stabilization term is computed in
an element-wise manner and subsequently incorporated in the global finite element
system.

As mentioned above, the form of the differential operator P defines the stabilization
technique used [13, 14, 23]. The SUPG method has been specifically designed to cope
with instabilities caused by convection dominance. This fact is reflected by the form
of the corresponding differential operator PSUPG, which reads

PSUPG pwq � LT
C pwq � BT dw

dx
. (3.40)

The GLS method attempts to minimize the residual associated to the differential
equation via a least-squares process. Hence, the weighting functions enter in the same
form of the original differential operator, i.e. PGLS is taken as

PGLS pwq � LT pwq � �
d

dx

�
AT dw

dx



�BT dw

dx
�GTw. (3.41)

Finally, the SGS method assumes that the solution can be additively decomposed into
a coarse-scale component which can be determined by the finite element method and
a fine-scale component which one tries to determine analytically. Furthermore, it is
assumed that these two components live in mutually orthogonal function spaces. Thus
the PSGS operator is defined as

PSGS pwq � �L� pwq �
d

dx

�
AT dw

dx



�BT dw

dx
�GTw, (3.42)

where L� is the adjoint operator of L.

Finally, the matrix containing the stabilization parameters is defined as

τ �
�c1
`2

Ao �
c2
`
Bo � c3Go

��1

, (3.43)

with
Ao � pAAq

1{2
, Bo � pBBq

1{2
, and Go � pGGq

1{2
, (3.44)

and c1 � 4, c2 � 2, and c3 � 1. This definition has been proposed by Codina [14] as
a straightforward extension of the single equation case in the framework of the GLS
method.
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3.5.1 Convection-diffusion system

The comparison of stabilization techniques is first carried out using the convection-
diffusion system (3.28) with boundary conditions (3.29). Figure 3.6 presents the nu-
merical results obtained by the proposed stabilization technique, SUPG, GLS, and
SGS using three different discretizations. The coarsest discretization consists of n � 16
nodes, the medium of n � 64 nodes and the finest of n � 256 nodes. The mesh density
is reflected in the figures by the colour brightness, i.e. the darkest lines correspond to
the coarsest discretization while the brightest lines correspond to the finest discretiza-
tion. All results shown in Figure 3.6 have been obtained using a diffusion parameter
ε � 10�2. Thus, the results presented here are comparable with those depicted in the
last row of Figure 3.1 which shows the classical approximation and the perturbation-
stabilized solution.

It can be observed in Figure 3.6 that all numerical approximations are free of spu-
rious oscillations. The results obtained with the SUPG, GLS and SGS methods
are practically indistinguishable. The numerical approximations obtained with the
perturbation-based stabilization technique differ from the other approximations. The
SUPG, GLS and SGS methods are obtaining approximately the same nodal values
irrespective of the discretization used. The pertrubation-based stabilization technique
shifts the boundary layers to the right, as can be seen most clearly for u1 and u3

respectively in Figure 3.6. This effect is at the cost of accuracy, i.e. the numerical
approximations rendered by the proposed stabilization scheme are notably influenced
by the discretization used.

3.5.2 Diffusion-reaction system

Now the comparison is carried out on the diffusion-reaction problem given by Equa-
tion (3.33) with homogeneous Dirichlet boundary conditions at both ends for the two
equations.

The numerical results obtained are depicted in Figure 3.7 in the same manner as in
the previous sub-section. The diffusion parameter has been taken as ε � 10�3. The
results presented here correspond to those presented in the middle row of Figure 3.4;
in fact, Figure 3.7(a) reproduces Figure 3.4(d).

For this diffusion-reaction problem not all results are free of spurious oscillations.
Indeed, the failure of the SUPG method to obtain stable solutions in the present case
is expected since the technique has not been designed to cope with reaction problems.
From Equation (3.40) it is easy to see that PSUPG vanishes identically, providing no
stabilization at all. This is not the case for the GLS method since PGLS does not
vanish, although the scheme is unable to remove the spurious oscillations close to the
boundary layers. For reaction dominated problems, this limitation has been reported
for both one and two-dimensional domains even for the single equation case by Donea
and Huerta [23]. It has also been reported by these authors that only the SGS method
is able to render numerical approximations free of spurious oscillations. However, in
this case it does not provide the same nodal values when different discretizations are
used, while the proposed perturbation-based stabilization technique does so.
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(a) Perturbation approach, ε � 10�2. (b) SUPG, ε � 10�2.

(c) GLS, ε � 10�2. (d) SGS, ε � 10�2.

Figure 3.6: Numerical approximations obtained using three different discretizations
consisting of n � 16 nodes (darkest), of n � 64 nodes (medium), and of n � 256 nodes
(brightest), for ε � 10�2, for the proposed stabilized scheme (top-left), the Streamline
Upwind Petrov-Galerkin (top-right), Galerkin Least-Squares (bottom-left), and Sub-
Grid Scale (bottom-right) methods. The corresponding classical results are depicted
in Figure 3.1(e) and the perturbation approach results are repeated from Figure 3.1(f).

It is remarkable the ability of the presented stabilization technique, for the diffusion-
reaction problem at hand, to render numerical approximations free of spurious oscilla-
tions with approximately the same nodal values when using different discretizations.

3.5.3 Convection-diffusion-reaction system

Finally, the comparison is made for the general convection-diffusion-reaction prob-
lem given by Equation (3.34). The results presented in Figure 3.8 have been obtained
using a diffusion parameter ε � 10�3 and correspond to those presented in the middle
row of Figure 3.5.

It is worth noting that this time the SGS method fails in rendering acceptable
numerical approximations. For the present problem, it is the SUPG method which
performs better, in the sense that it is capable of rendering solutions which are free

Numerical stabilization for multidimensional coupled convection-diffusion-reaction equations.

Applications to continuum dislocation transport.



54 Section 3.5. Comparison with other techniques

(a) Perturbation approach, ε � 10�3. (b) SUPG, ε � 10�3.

(c) GLS, ε � 10�3. (d) SGS, ε � 10�3.

Figure 3.7: Numerical approximations obtained using three different discretizations
consisting of n � 16 nodes (darkest), of n � 64 nodes (medium), and of n � 256 nodes
(brightest), for ε � 10�3, for the proposed stabilized scheme (top-left), the Streamline
Upwind Petrov-Galerkin (top-right), Galerkin Least-Squares (bottom-left), and Sub-
Grid Scale (bottom-right) methods. The corresponding classical results are depicted in
Figure 3.4(c) and the perturbation approach results are repeated from Figure 3.4(d).

of spurious oscillations and with the coarse approximation that best resembles its cor-
responding fine approximation. The perturbation-based stabilization technique seems
to over-diffuse the first solution, i.e. u1, for the coarsest discretization. A similar but
milder effect can be observed for the GLS method.

Concluding remarks

The comparison has highlighted both the strengths and weaknesses of the presented
stabilization technique with respect to well established stabilization methods. It is
worth to mention that its ability to deal satisfactorily with all three different kinds
of problems presented here is not shared by any of the other stabilization techniques.
This shows its versatility and flexibility when dealing with general convection-diffusion-
reaction problems and the convection-diffusion and diffusion-reaction sub-cases as
well.
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(a) Perturbation approach, ε � 10�3. (b) SUPG, ε � 10�3.

(c) GLS, ε � 10�3. (d) SGS, ε � 10�3.

Figure 3.8: Numerical approximations obtained using three different discretizations
consisting of n � 16 nodes (darkest), of n � 64 nodes (medium), and of n � 256 nodes
(brightest), for ε � 10�3, for the proposed stabilized scheme (top-left), the Streamline
Upwind Petrov-Galerkin (top-right), Galerkin Least-Squares (bottom-left), and Sub-
Grid Scale (bottom-right) methods. The corresponding classical results are depicted in
Figure 3.5(c) and the perturbation approach results are repeated from Figure 3.5(d).

3.6 Conclusions and outlook

In this chapter a stabilization technique for general systems of coupled convection-
diffusion-reaction equations with constant coefficients was developed. For the linear
uncoupled case the proposed stabilization technique recovers the approach presented
in [34]. That stabilization technique was developed for a single equation yielding
unconditionally stable solutions based on the discrete maximum principle. The stabi-
lization is achieved by effectively perturbing the transport coefficients of the equation
to be discretized. Such perturbations are optimally determined to be the minimum
ones required to obtain smooth and stable approximations. Additionally, it was shown
that the numerical approximations obtained with the stabilized scheme converge to
the classical Bubnov-Galerkin solution when the mesh Péclet number is small enough,
a fact confirmed using a thorough and detailed numerical assessment. An illustrative
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application demonstrates that the general convection-diffusion-reaction case also in-
herits these desirable properties. The stabilization technique is applicable regardless
whether the advective or the divergence form of the partial differential equation is
used for the spatial discretization, making it highly flexible and general, and allowing
it to deal with different types of complex boundary conditions.

Although originally developed for coupled equations with constant coefficients, the
stabilization technique has also been successfully applied to equations having spatially
variable convection and reaction coefficients. This renders the method particularly
versatile for problems with time dependent or even non-linear transport coefficients,
including also the diffusion coefficients. Furthermore, since the perturbations required
to render smooth numerical approximations are computed element by element this
stabilization technique is locally adaptive, properly handling variable element sizes.
Finally, there is no need to compute in advance, adapt, or change the mesh at any
stage of the computation. This flexibility also removes the need for ordering or scaling
of the system of differential equations prior to discretization.

For future work, the proposed stabilization technique can be extended to multidi-
mensional configurations. Although the present chapter mainly focused on constant
diffusion and space dependent convection and reaction coefficients in steady state with
Dirichlet boundary conditions, variable diffusion coefficients, time dependency of the
transport coefficients, non-linearity and other types of boundary conditions will be
investigated in steady and transient states.

In this chapter, the effect the stabilization technique on the general properties of the
system of algebraic equations after discretization has not been addressed. In particular,
the spectral properties of this system may guide one to more effective strategies to solve
it, especially when using iterative methods combined with preconditioning techniques.
This will be the subject of forthcoming work.
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Chapter 4

Applications to Coupled
Continuum Dislocation
Transport Equations

Abstract

Plasticity of crystalline materials is physically described at the meso-scale by dis-
locations transport models, typically formulated in terms of dislocation densities.
This leads to sets of coupled partial differential equations involving diffusion-like and
convection-like processes combined with non-linearity. Since exact solutions for these
systems are not available, numerical approximations are needed to efficiently solve
them. However, the properties of these systems of equations cause most traditional nu-
merical methods to fail, even for the case of a single equation. For systems of equations
the problem is even more challenging due to the lack of fundamental principles guiding
numerical discretization strategies. Therefore, dedicated strategies must be developed
and carefully applied in order to obtain physically meaningful and numerically stable
approximations. The objective of this chapter is to present a stabilization technique
for systems of convection-diffusion-reaction equations and apply it to the equations
modelling one-dimensional dislocation transport. This stabilization technique, based
on coefficient perturbation, renders well-behaved and physically admissible numerical
approximations. Several of its favourable characteristics are discussed, providing evi-
dence of its versatility and effectiveness through a detailed numerical assessment.

keywords.- Convection-diffusion-reaction, Coupled systems, Finite element method,
Crystal plasticity, Continuum dislocation transport.

This chapter is based on: Hernández H., Massart T.J., Peerlings R.H.J., and Geers M.G.D.
2016. Stabilization of Coupled Convection-Diffusion-Reaction Equations for Continuum Dislocation
Transport. In preparation.
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4.1 Introduction

In applied materials science the accurate description of the plastic behaviour of ma-
terials is of paramount importance since it highly influences the material’s mechanical
behaviour. For crystalline solids, inelastic effects have been taken into account at the
level of single crystals by various crystal plasticity models [66]. At a higher spatial
resolution, plasticity in a single crystal can be modelled in a physical setting using
dislocation transport equations [21, 32, 36].

These frameworks are typically formulated in terms of dislocation densities, resulting
in a continuum description at the meso-scale. The transport equations consist of a set
of coupled, transient, and non-linear partial differential equations, involving derivatives
in space of both first-order and second-order [31, 32]. The simultaneous presence of
both order derivatives of transported densities complicates the numerical treatment of
such systems of equations. This is particularly true if the first-order convection-like
term dominates the second-order diffusion-like term.

Using classical numerical schemes, e.g. centred finite differences or Bubnov-Galerkin
finite elements, to approximate the solution of these transport problems (combining
convection and diffusion), spurious and non-physical oscillations appear, rendering the
numerical approximation unstable. Hence, stabilization approaches must be used in
order to retrieve physically meaningful and numerically stable approximations. In a
general finite element context, several stabilization techniques have been proposed; e.g.
the Streamline Upwind Petrov-Galerkin method [7, 41], the Galerkin Least-Squares
method [27], the bubble multi-scale stabilization method [60], the sub-grid method
[33], and the finite calculus-based approach [57]. The vast majority of these techniques
mainly deals with convection dominated problems [23, 87]. The addition of a reaction
term may cause numerical instabilities by itself, even in the absence of convection [60].

An stabilization technique based on coefficients perturbation was first developed in
[34], relaying on system equations with signed dislocation densities. In that chapter it
is shown, and confirmed numerically, that the stabilized finite element approximation
obtained by coefficient perturbation converges to the classical Bubnov-Galerkin scheme
if diffusion-like terms dominate over the convection-like terms on a sufficiently fine
mesh. This has been achieved by enforcing the discrete maximum principle, which
is the translation of the continuous maximum principle related to the physics of the
problem [12, 80].

Unfortunately, the stabilization technique proposed in [34] has proven to be use-
less when straightforwardly applied to dislocation transport equations involving total
and geometrically necessary dislocation densities as the field variables, rather than
positive and negative dislocation densities. This is due to the fact that when signed
dislocations are considered, it is possible to arrange the non-linear terms in such a
way that the negative dislocation density acts as a transport coefficient in the positive
dislocation density equation and vice-versa. Therefore, the system consisting of two
partial differential equations can be handled numerically as two independent prob-
lems from a numerical stability viewpoint, although its numerical time integration is
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done alternately. This uncoupling is not possible when total and geometrically neces-
sary dislocation densities are the governing field variables, since terms containing only
the geometrically necessary dislocation density appear in the total dislocation density
equation and vice-versa. The problem cannot be decomposed into two problems, which
would have allowed for the use of stable approximations of single convection-diffusion
partial differential equations. Instead, a single problem consisting of two strongly
coupled equations should be solved simultaneously and monotonically.

This change of perspective has profound conceptual and technical consequences. It
suggests to treat the fully general case with m coupled convection-diffusion-reaction
equations, where the particular case m � 1 received most attention during the past
decades among numerical methods practitioners. Such systems of coupled equations
are met in several branches of science such as bio-mechanics [18], combustion [5], com-
puter science [30], ecology [45], economy [6], epidemiology [84], finance [17], ground-
water pollution [4], heat transfer [70], neuroscience [3], physiology [37], seepage flow
[71], solid mechanics [14] or turbulence [15]. Since for this multiple equations case,
analytical solutions are even harder to obtain than for the single equation case, nu-
merical approximations constitute the only available option to solve such systems.
Nevertheless, only limited attention has been given to the stabilization of systems of
equations. The lack of reliable and robust numerical approximation techniques results
from the lack of a maximum principle when passing from a single equation to systems
of coupled equations in the most general form [62].

Numerical difficulties present in the single equation case; and observed when con-
vection, reaction, or a combination of them dominates over diffusion or when the
discretization is not fine enough; are inherited by the multiple equations case. Solving
such instability problems for systems of equations has been tackled by extending and
adapting techniques originally developed for the single equation case. The most rep-
resentative approaches consist of upwind finite differences applied to the convective
terms on layer adapted meshes according to the construction methodologies proposed
by Shishkin and Bakhvalov [29, 48]. For finite volumes, the use of discontinuous and
high order approximations, upwinding and adaptive meshes were the most successful
techniques to deal with coupled equations [16, 58]. In the finite element method con-
text; streamline upwind Petrov-Galerkin, Galerkin least-squares, algebraic sub-grid
scale with high order elements together with shock capturing techniques are the most
common techniques [4, 5, 14]. Notwithstanding all this progress, the straightforward
application of these techniques is rendered useless due to the particular characteristics
of the continuum dislocation transport equations, mainly the non-standard boundary
conditions with which they are supplemented.

Taking the single equation case as the departure point, a stabilization technique
based on coefficients perturbations was proposed and proven to be effective for sys-
tems of linear one-dimensional convection-diffusion-reaction equations in steady state
[35]. The main objective of the present chapter is to exploit and to apply this stabi-
lization technique for dislocation transport problems expressed in terms of the total
and geometrically necessary dislocation densities, including its non-linearity in the
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transient regime. The stabilization technique is expected to be versatile despite these
two additional complexities associated with dislocation transport.

The chapter is organized as follows. In Section 4.2, the physical model problem,
consisting of the shearing of an infinite crystal, is described. Section 4.3 assesses the
effectiveness of the stabilization technique presented in the previous chapter for the
system of equations through two numerical examples comparing stabilized results with
those obtained with the classical Bubnov-Galerkin scheme. This is followed by two
additional numerical examples, allowing to thoroughly assess the efficiency and consis-
tency of the stabilization technique. To close this section, several numerical simulations
obtained for different dislocation transport modelling assumptions are presented. Due
to the non-linearity of the continuum dislocation transport equations, the definition
of the diffusion and convection matrices is non-unique. Section 4.4 has been included
in order to evaluate the influence of an alternative definition on the performance of
the stabilization technique. Finally, Section 4.5 presents the main conclusions of this
chapter and discusses some future work.

4.2 Continuum model for dislocation transport

The main focus of this chapter is to apply an efficient stabilization technique for
the simulation of dislocation transport in a single crystal, regardless of the field vari-
ables considered. The equations to be discretized are written in terms of dislocation
densities on glide planes. For the sake of simplicity, a single glide system with infinite
parallel edge dislocations is considered. In chapter 2, positive and negative disloca-
tions densities, denoted respectively by ρ� and ρ�, were used in the construction of
the continuum model for dislocation transport. This choice was made since ρ� and
ρ� have a clear intuitive physical interpretation. However, it is possible to use dif-
ferent types of dislocation densities as the field to be approximated numerically, as
more commonly done in the literature. This change of variables can introduce cou-
pling coefficients for which the proposed stabilization technique (extended to systems
of differential equations) is particularly well suited.

4.2.1 Governing equations

It is a common practice in literature to use the total dislocation density ρ and the
geometrically necessary dislocation density κ rather than the previously used positive
and negative dislocations densities, since these total dislocations and geometrically
necessary dislocations densities are directly related to macroscopic properties such as
incompatibility and hardening. They are related to the positive and negative disloca-
tion densities by

ρ � ρ� � ρ�, and κ � ρ� � ρ�. (4.1)

Using these relations it is possible to rewrite the transport equations, first for ρ by
adding Equations (2.2) and (2.3) and then for κ by subtracting Equation (2.3) from
Equation (2.2), yielding

Bρ

Bt
�

B

Bx
pΦρq � sρ, (4.2)
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Bκ

Bt
�

B

Bx
pΦκq � sκ, (4.3)

where the fluxes are obtained similarly as Φρ � Φ��Φ� and Φκ � Φ��Φ� which can
again be expressed in terms of ρ and κ. By introducing the following two constants

C4 � b11C1L , and C5 � b12C1L , (4.4)

the corresponding fluxes are expressed in a compact form as

Φρ � C0κ� C4ρ
Bρ

Bx
� C5κ

Bκ

Bx
, (4.5)

Φκ � C0ρ� C5ρ
Bκ

Bx
� C4κ

Bρ

Bx
. (4.6)

The substitution of these fluxes (4.5-4.6) in the conservation Equations (4.2-4.3) leads
to a system of two coupled transient and non-linear partial differential equations for
which analytical solutions are not available. Therefore, a numerical approximation is
required for which the finite element method will be used in the next section.

The two more representative types of boundary conditions are not altered by the
change of variables. The first one consists of a free surface where dislocations can
escape, causing their corresponding density to vanish, i.e. ρpΓDq � κpΓDq � 0, where
ΓD is the part of the boundary of the domain on which the above mentioned condition
applies. This corresponds to Dirichlet boundary conditions for the conservation Equa-
tions (4.2-4.3). In the other extreme the boundary presents an impenetrable barrier
for the dislocations, e.g. a hard grain or phase boundary. This situation can be stated
as ΦρpΓRq � ΦκpΓRq � 0.

Initial conditions, but this time for the total and geometrically necessary dislocation
densities, i.e. ρ0pΩq � ρpΩ, t � 0q and κ0pΩq � κpΩ, t � 0q should be added in order
to properly define the continuum dislocation transport problem.

4.3 Computational assessment of the stabilization
technique

This section presents the application of the extension to systems of coupled equations
of the stabilization technique to the dislocation transport system given by Equations
(4.2-4.3) with their corresponding fluxes given by Equations (4.5-4.6). Of particular
interest is the illustration of the efficiency and consistency of the stabilization scheme
presented in Chapter 3.

In order to apply the stabilization technique to the non-linear dislocation transport
problem, the fluxes of dislocations given by Equations (4.5-4.6) are directly substituted
in the dislocation density conservation Equations (4.2-4.3), giving

Bρ

Bt
�

B

Bx

�
�C4ρ

Bρ

Bx
�

�
C0 � C5

Bκ

Bx



κ

�
� sρ, (4.7)
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Bκ

Bt
�

B

Bx

�
�C5ρ

Bκ

Bx
� C0ρ� C4

Bρ

Bx
κ

�
� sκ, (4.8)

where the terms composing the fluxes have been re-written in a slightly different format
than in Equations (4.5-4.6). This change has been done in order to clearly identify
the convection-like coefficients or diffusion-like coefficients, either direct or crossed,
and finally to be able to cast this system of coupled partial differential equations
in the generic matrix form given by Equation (3.5). In such a generic form, the
unknown vector is taken as u � rρ, κsT ; it follows naturally that the source vector
is f � rsρ, sκs

T . Thus, the diffusion matrix A and the advection matrix B can be
expressed as:

A � ρ

�
C4 0
0 C5

�
, and B �

�
0 C0 � C5

Bκ
Bx

C0 �C4
Bρ
Bx

�
. (4.9)

Note that this form can be established irrespective of: (i) the dislocation trans-
port model type used (e.g. [21] for Dogge model or [32] for Groma model), (ii) the
length scale adopted (constant or variable), (iii) the presence of interactions between
dislocations of different sign.

It is useful to analyse in some depth the properties of these diffusion and advection
matrices. First note that the effectiveness of the stabilization technique will be deter-
mined by the positive definiteness of the diffusion matrix which can be seen as the vec-
tor equivalent of having a positive diffusion coefficient in the scalar case, i.e. diffusion
always takes place in the negative gradient’s direction. This property can be easily
verified through the diffusion matrix determinant which is given by |A| � C4C5ρ

2;
which apart of the square of the ρ value, it is determined by the C4 and C5 constants.
These are given by Equation (4.4). After continued substitution, the diffusion matrix
determinant can be finally be written as

|A| � b11 b
1
2 p ρ C1 L q

2
. (4.10)

It is clear that the positiveness of the diffusion matrix is not affected by the length
scale L , nor by the material properties since C1 � 0. This property is only affected
by the model used and if the interactions between dislocations of different signs are
taken into account or not. This can be observed by identifying the b11 and b12 values
for the two considered models, shown in tabular form as

Crossed interaction
b11 With Without

Dogge 3 1
Groma 0 0

Crossed interaction
b12 With Without

Dogge 1 1
Groma 4 12

Note that the Groma model poses a serious difficulty to the stabilization technique
presented here since the conservation equation for the total dislocation density ρ be-
comes a purely hyperbolic partial differential equation. Such equations have been
successfully handled by the finite difference and finite volume communities by means
of several techniques that have shown to be effective throughout the years, the up-wind
differences being the oldest and simplest one. In general terms all these techniques,
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and up-winding in particular, rely on the addition of artificial diffusion. Therefore
all of them can be interpreted as perturbation techniques that introduce ellipticity
into the original hyperbolic partial differential equation. This is the main reason to
consider the introduction of a threshold diffusion when dealing with the Groma type
models. Such threshold will be taken as αmin � 10�12 in all subsequent computations.

To incorporate the transient character of the problem, the fully implicit backward
Euler method has been used for time integration. This scheme is unconditionally stable
with respect to the time step size ∆t and to the spectral properties of the matrices
resulting from the space-time discretization, despite having only first order accuracy
[2, 19, 38, 49, 63].

For all simulations, the Picard iterative method is used to deal with the non-linear
system of equations obtained after discretization of the dislocation transport equations
at each time step [63, 64]. The difference among two successive approximations is
measured as

dpjq �

b
||ρ

pjq
t � ρ

pj�1q
t ||22 � ||κ

pjq
t � κ

pj�1q
t ||22, (4.11)

where the vectors ρ � rρ1, ρ2, � � � , ρn�1, ρns
T and κ � rκ1, κ2, � � � , κn�1, κns

T , with
n being the total number of nodes composing the finite element mesh, are the nodal
values of the total dislocation and the geometrically necessary dislocation densities,
respectively. In Equation (4.11) the sub-index t is the current time instance, not to
be confused with the nodal labels used for the individual components of such vectors.
The iteration is stopped as soon as the tolerance εn � 10�6 is reached, i.e. dpjq   εn.
The initial guess is always taken as the final solution at the previous time step, i.e.
ρ
p0q
t�∆t � ρ

pjq
t and κp0qt�∆t � κ

pjq
t .

At each non-linear iteration, a linear system of equations has to be solved. For this
purpose the BiCGStab method has been used, having in mind a future multidimen-
sional extension of the framework involving very large and sparse systems [67, 77]. In
all cases, the maximum number of allowed iterations is set equal to the size of the linear
system, although the iterative process is stopped as soon as ||r pkq||{||b||   εs � 10�6

is reached, with r pkq the k-th residual vector and b the right hand side vector. The
final approximation of the previous iteration is always taken as the initial guess for
the linear solver. No preconditioning is used.

The physical parameters have been taken constant for the ease of comparison. The
values used correspond to those presented by [50] and are comparable to those used in
[21]. The domain considered has unit length L � 1 µm, and a single phase has been
used on the whole domain. Its properties are as follows; h � 0.1 µm, b � 0.3 nm,
B � 10�4 Pa s, ν � 1{3, G � 25 GPa. The initial condition for all problems was
given by ρ0 � 400 µm�2 and κ0 � 0 µm�2. Finally, the time step is the same for all
simulations, with ∆t � 10�1µs.

For all subsequent numerical examples, except those presented in the last Section
4.3.4 in which a comparison between models is carried out, the Dogge model with
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a constant length scale and considering interactions between dislocations of different
sign, i.e. L � h, a � 1 and b1 � b2 � 1.

Only the applied stress τ and the mesh size ` are modified during this study. Once
they are chosen for a particular problem they remain unchanged, i.e. for a particular
simulation the applied stress is constant over the whole domain which is discretized
with a uniform mesh.

The precise definition of a mesh Péclet number in it most traditional way is, for
the coupled equations at hand, an intricate matter. Indeed, it is only possible for the
second equation to compute it according to Equation (2.30). After simplifying, it can
be expressed as

Peκ �
`

2
b11
b12

�
1
ρ

Bρ

Bx



. (4.12)

First notice that for the Groma model, such number is zero since b11 � 0. Moreover,
due to the non-linear nature of the dislocation transport problem, this Péclet number
depends on the total dislocation density and its gradient, which change over time.
However, if a uniform distribution of the total dislocation density is reached, or if a
uniform initial condition is used, the Péclet number vanishes here as well. The situation
is even more complicated for the first equation, since in this case the direct advection
coefficient βρρ is always zero, thus Peρ � 0, irrespective of the model, irrespective of
the length scale used and irrespective of the account for interactions between different
types of dislocations.

As dislocation transport starts, this situation becomes even more intricate because
dislocations are expected to pile up at the impenetrable boundaries, forming boundary
layers. Since the applied stress τ will be taken constant through the whole spatial
domain, a V -shape profile for the total dislocation density is expected. As transport
continues, dislocations are expected to pile up in a smaller region reducing the bound-
ary layers width. At this moment three different regions can be roughly identified. The
first one is close to the boundaries where the total dislocation density and its gradient
attain their largest values through the spatial domain. These two facts reduce and
increase, respectively, the local Péclet number. The second region is the central one
in which the total dislocation density and its gradient attain both their lowest values
causing an increase and reduction, respectively, of the local Péclet number. The third
and more critical region is the transitional one in which a low total dislocation den-
sity and a high value of its gradient both involve an increase of the Péclet number.
Thus, as the simulations advance in time, and the uniform distribution of the total
dislocations density changes to the mentioned V -shape profile, it is expected that the
adaptive nature of the stabilization technique will play a more prominent role.

4.3.1 Influence of the applied stress

In this first example, the main focus is put on the ability of the stabilization tech-
nique to remove spurious oscillations and to yield only non-negative total dislocation
densities. To this aim, three different cases are presented, all using the same uniform
coarse mesh of 24 � 16 linear elements. Only the applied stress is increased in each of

Numerical stabilization for multidimensional coupled convection-diffusion-reaction equations.

Applications to continuum dislocation transport.



Section 4.3. Computational assessment of the stabilization technique 65

the cases, taking the values τ � 0.01, 0.1, and 1.0 GPa. All the presented results are
obtained at time t � 106 µs.

Figure 4.1 shows the results in terms of total dislocation and geometrically necessary
dislocation densities in blue and red respectively. The results obtained with the clas-
sical (non-stabilized) Bubnov-Galerkin method are depicted in the left column, while
the right column shows the results obtained with the stabilization technique. These
numerical schemes are referred to as classical and stabilized respectively.

Note that in the first case depicted in the top row of Figure 4.1, for a small applied
stress (τ � 0.01 GPa), no noticeable difference can be observed between the classical
and stabilized approximations for both dislocation densities. The applied stress is not
large enough to generate tight and sharp boundary layers and therefore the middle
of the spatial domain remains sufficiently occupied by dislocations, avoiding a large
reduction of the diffusion coefficients given by αρρ � C4 ρ and ακκ � C5 ρ.

The results for the second case with τ � 0.1 GPa are shown in the middle row
of Figure 4.1. For the classical scheme, saw-tooth-like wiggles start appearing in the
central region of the spatial domain where the total dislocation density is close to zero,
which causes a decrease of the diffusion coefficients. This effect pollutes the numerical
approximation, with the nodal values of the total dislocation density at some nodes
being negative, which is physically meaningless. The numerical approximation ob-
tained with the stabilization scheme, as shown on the right, is smooth, non-negative
for the total dislocation density, and free of any oscillation. It is important to note that
the maximum and minimum values attained by both total dislocation and geometri-
cally necessary dislocations differ between the classical and stabilized approximations.
Larger values are obtained by the classical scheme, but this classical numerical ap-
proximation is meaningless since it reveals spurious oscillations and negative values
for a strictly non-negative quantity.

The results for the third case with τ � 1.0 GPa are shown in the last row of Figure
4.1, a stress level that matches practical applications. On the left, corresponding to the
classical scheme, the oscillations are much larger than in the previous case, making the
numerical approximation completely useless for any application. This effect is partially
due to the fact that the convective character of the problem, has increased by one order
of magnitude through the applied stress increment. The second important reason is the
decrease of the effective local diffusion coefficients due to the starvation of dislocations
in the central part of the spatial domain. The corresponding stabilized result is shown
on the right in the last row. It does not exhibit any wiggles or oscillations and the
total dislocation density is non-negative in the entire spatial domain. As expected, the
width of the boundary layer is decreased and dislocation densities reach higher values
compared to the case with a lower applied stress.

These results confirm that the stabilization technique is effective when required. If
spurious oscillations are not present because the problem is not dominated by convec-
tion, the effect of the stabilization is negligible, as confirmed by the plots depicted in
the first row of Figure 4.1. On the other hand, the beneficial effect of the stabilization
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technique becomes apparent as soon the convective character of the system of partial
differential equations starts polluting the numerical approximation obtained by the
classical scheme, distorting it with wiggles and non-physical negative density values.

In terms of computing time, for the same discretization, the use of the stabilization
technique practically doubles the elapsed time with respect to the classical scheme for
cases in which the latter still furnishes physically meaningful results. One nevertheless
expects a significant gain in computational efficiency, because using the stabilization
technique allows coarsening the mesh drastically compared to a classical formulation
for convection dominated problems.

4.3.2 Influence of the discretization

The aim of this example is to analyse the behaviour of the stabilization technique
under mesh refinement and the non-linearity influence as time advances. Therefore,
the element size ` is progressively reduced and the applied stress is kept constant and
equal to τ � 10�0.5 GPa for all current examples.

In each plot in Figure 4.2, the total dislocation density profiles obtained at equally
spaced time instances between to � 0 µs and tf � 106 µs are shown, the brightest one
corresponding to the initial time and the darkest one to the last time instance. As in
the previous example, classical approximations are depicted on the left and stabilized
ones on the right. The results obtained using increasingly refined meshes of 16, 32,
64, and 128 elements with linear shape functions are depicted.

Note that for the coarsest mesh, depicted in the first row of Figure 4.2, the approx-
imations obtained with the classical scheme start to show an oscillatory behaviour
from early time instances onwards, precisely in the above mentioned transitional re-
gion. Such spurious oscillations start to scatter and become more pronounced as time
advances due to the reduction of the diffusion coefficients as the total dislocation den-
sity ρ approaches zero. In contrast, the approximations obtained with the stabilized
scheme are, for all time instances, strictly non-negative and free of spurious oscillations
even in the central region, where the total dislocation density reaches almost vanishing
values. This is also true for the transitional regions, where the high value reached by
the geometrically necessary dislocation density gradient increases the crossed advec-
tion coefficient βρκ, making the numerical approximation more prone to oscillatory
behaviour. From the discrepancy of the vertical axis scale in these two plots it can
be noticed that the maximum values of the numerical approximations attained for
the classical and stabilized schemes differ considerably. The surplus obtained by the
classical scheme is presumably due to the lack of stability of that scheme, the solution
of which is not reliable due to the presence of wiggles and negative values.

Moving to the second row of Figure 4.2, the number of elements composing the
finite element mesh is doubled while all other parameters remain identical. Again,
from the left plot corresponding to the classical scheme, it is noticeable that wiggles
appear in the transitional region, and propagate to the central region at increasing
times due to the decrease of the total dislocation density in this region. For this case
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(a) Classical, τ � 10�2.0 GPa. (b) Stabilized, τ � 10�2.0 GPa.

(c) Classical, τ � 10�1.0 GPa. (d) Stabilized, τ � 10�1.0 GPa.

(e) Classical, τ � 100.0 GPa. (f) Stabilized, τ � 100.0 GPa.

Figure 4.1: Comparison of the total dislocation density ρ in blue and the geometrically
necessary dislocation density in red, both in µm�2 obtained with the classical (left)
and stabilized (right) scheme using a discretization with 16 elements, increasing the
stress τ from top to bottom.
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the oscillations do not grow as severely compared to the previous case because the
mesh has been refined. Like before, the classical scheme still overestimates maximum
values. For the stabilized scheme, at all time instances, the approximations are strictly
positive and free of spurious oscillations. Note that the maximum values attained are
higher with respect the stabilized results using a coarser mesh. This discrepancy will
be further analysed in what follows.

By doubling again the number of elements used in the mesh, the numerical approx-
imations shown on the third row of Figure 4.2 are obtained. The classical scheme
approximation is now also free of oscillations at all time instances, except at the final
time instance at which tiny but still noticeable wiggles can be observed in the transi-
tional region. This is consistent with the explanation of the results obtained with the
two previous meshes. Again, the stabilized scheme results are strictly non-negative
and free of any wiggle through the whole spatial domain for all time instances. Fur-
thermore, it is emphasized that the difference between the maximum values attained
by the classical or stabilized schemes is now progressively reduced as time advances,
to become insignificant at the last time instance.

Finally, the fourth and last row of Figure 4.2 shows the results obtained using the
finest mesh for the present example, consisting of 128 elements. The first important
feature to observe is that for this refinement level, the classical scheme now recov-
ers a stable approximation, which does not exhibit spurious oscillations. For this
level of refinement, the classical scheme approximation can be regarded as reliable for
comparative purposes with respect to the approximation obtained with the stabilized
scheme. Both approximations are very similar at the last time instance, not only for
the maximum values attained in the boundary layers, but also for the profile shape in
the whole spatial domain, while this is less the case at intermediate time instances.
The stabilized approximation seems to be blunter than the classical approximation in
those regions where a high gradient change occurs. For the stabilized scheme more
intermediate time step solutions can be discerned, contrary to the classical scheme in
which only two intermediate approximations can be recognized apart from the initial
condition and the steady state solution. Hence, the steady state solution correspond-
ing to the last time instance is somewhat delayed in the stabilized scheme, even if the
stabilization effect on this last approximation is negligible.

To close this analysis, two important observations remain to be discussed, namely
the maximum values discrepancies when using a series of refined meshes with stabi-
lization, and the steady state solution delay observed when analysing the finest mesh
results. Both effects can be associated with the artificial diffusion introduced by the
stabilization scheme in order to render stable numerical approximations. When using
the stabilization scheme, the original problem is not solved but rather another problem
with slightly modified coefficients. This in turn is the conceptual basis of the stabiliza-
tion technique since it is based on perturbing the original problem, and instead solve a
problem with coefficients selected to resemble as close as possible the original one, but
with which the approximation remains free of wiggles and spurious oscillations when
discretized using a given mesh. The classical and stabilized results obtained with an
even more refined mesh containing 256 elements (not shown here) are almost identical
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at all time instances, a fact that confirms the artificial diffusion addition argument.
This confirms the fact that the present stabilization technique intervenes only when it
is strictly needed, whereas it is inactive if the mesh is fine enough to get numerically
stable approximations.

4.3.3 Non-linear and time evolution adaptivity

In this section a detailed analysis of the stabilization technique behaviour is carried
out in order to provide evidence of its flexibility and adaptive nature. This analysis
is performed by modifying the applied stress and mesh refinement. Henceforth, only
results obtained with the stabilization scheme will be considered.

Stress variation

In the first situation, the mesh is fixed and consists of 256 elements. The stress level
is modified in order to observe its influence on the evolution of the direct diffusion
and advection coefficients for the geometrically necessary dislocation densities κ given
by Equation (4.8). These coefficients are in turn used by the stabilization technique
to determine the direct advection perturbation β�κκ. In order to simplify the current
analysis, the crossed advection perturbation is set to zero, i.e. β�κρ � 0, even though
its corresponding coefficient does not vanish, being indeed a time invariant constant
through the whole spatial domain, i.e. βκρ � C0. Thus the effects of both, direct and
crossed, advection coefficients will be active on the direct advection perturbation only.

Figure 4.3 shows on the first row the direct diffusion coefficient ακκ � ρC5, while on
the second row the direct advection coefficient βκκ � �C4 Bρ{Bx is depicted. Similar
plots for the crossed advection coefficient are not shown since, even if it influences the
perturbation evolution to analyse, since it remains constant. The third row of Figure
4.3 shows the direct advection perturbation β�κκ, which is the main quantity of interest
in the present analysis. The stress level is increased column by column by one order
of magnitude.

The first important observation is that the direct diffusion coefficient decreases in
the central region and increases close to the impenetrable boundaries exhibiting a
boundary layer behaviour. This is of course due to the fact that the direct diffusion
coefficient is simply a scalar multiplied by the total dislocation density. As expected,
the boundary layer width decreases and the maximum values attained are larger as the
stress is increased, see first column of Figure 4.3. An almost perfect linear relationship
exists between the magnitude of the maximum values attained by ακκ and of the
applied stress.

A second important observation can be made in the second row of Figure 4.3, where
the time evolution of the direct advection coefficient for three different stress levels
is shown. Since the plotted quantity is a scalar times the total dislocation density
gradient, these plots keep a close relationship with those presented in the first row.
The boundary layer pattern is not as apparent as in the previous row but, mainly from
the third column, it is clear that the same behaviour is also exhibited by the direct
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(a) Classical, ne � 24. (b) Stabilized, ne � 24.

(c) Classical, ne � 25. (d) Stabilized, ne � 25.

(e) Classical, ne � 26. (f) Stabilized, ne � 26.

(g) Classical, ne � 27. (h) Stabilized, ne � 27.

Figure 4.2: Comparison of the time evolution of the total dislocation density ρ in µm�2

obtained with the classical (left) and stabilized (right) scheme for an applied stress
τ � 10�0.5 GPa, doubling the number of elements composing the finite element mesh
from top to bottom. The cyan line corresponds to the initial condition and the blue
one to the last computed time instance (t � 106 µs), intermediate approximations are
at equidistant time intervals.
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advection coefficient βκκ. Note again that the order of magnitude of the maximum
values attained for βκκ is approximately linearly related to the order of magnitude of
the applied stress as observed in the vertical axis scale.

Once the behaviour of ακκ and βκκ have been analysed, the perturbation β�κκ can be
scrutinized based on the third row of the Figure 4.3. As expected, a localized behaviour
can also be recognized, but in this case these are not due to boundary layers, instead
they are now internal layers. Such internal layers in which β�κκ strongly evolves appear
precisely in the transitional region where a low total dislocation density is combined
with a large value of its spatial gradient. The development of such regions for β�κκ starts
to be evident even in the left-most plot corresponding to the weakest applied stress,
where one would expect high values in the central region based on the direct diffusion
decrease there. For the central plot with an incremental applied stress, the width of
the internal layer reduces from outside the spatial domain towards its centre, since the
total dislocation density gradient becomes, though high in magnitude, constant close
the boundaries where the total dislocation density itself attains its maximum values.
This combined effect becomes more prominent by increasing the applied stress. The
right-most column, reveals an internal layer of β�κκ that is much thinner with respect
to the previous ones.

Mesh variation

The manner in which the stabilization technique affects the stability issues when
the mesh is refined for a fixed applied stress is investigated next. This is carried out
by scrutinizing the crossed advection perturbation for the total dislocation density
equation β�ρκ, in relation with the two physical coefficients controlling it, i.e. the
direct diffusion coefficient αρρ � ρC4 and the crossed advection coefficient βρκ �
C0 � C5 Bκ{Bx. The direct advection perturbation will be set as zero, i.e. β�ρρ � 0,
and therefore the effect of the direct diffusion and crossed advection coefficients will
be active only on the crossed advection perturbation, in a similar way as done in the
previous example.

Figure 4.4 shows on the first row the direct diffusion coefficient through the spatial
domain for equally spaced time instances for three different meshes with 16, 64, and
256 elements; while the second row shows the crossed advection coefficient. These two
physical coefficients are the ones affecting in the computation of the crossed advection
perturbation, which in turns is the main quantity of interest in this analysis. This
perturbation is shown in the third row of Figure 4.4.

The analysis is much simpler than in the previous example since now both, the
direct diffusion and crossed advection coefficients show exactly the same boundary
layer pattern. Here, their effects are mutually reinforced, and not counteracted as
in the previous example. For instance, the central region where the direct diffusion
coefficient tends to vanish is the same region where the crossed advection remains high
as the simulation evolves in time. On the other hand, the pile up of dislocations close
to the boundaries increases the direct diffusion coefficient, an effect reinforced by the
local reduction of the crossed advection coefficient due to the positive geometrically
necessary dislocation gradient Bκ{Bx caused by the pile up of dislocations.
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(a) ακκ, τ � 10�2.0. (b) ακκ, τ � 10�1.0. (c) ακκ, τ � 100.0.

(d) βκκ, τ � 10�2.0. (e) βκκ, τ � 10�1.0. (f) βκκ, τ � 100.0.

(g) β�κκ, τ � 10�2.0. (h) β�κκ, τ � 10�1.0. (i) β�κκ, τ � 100.0.

Figure 4.3: Comparison of the time evolution of the direct diffusion coefficient ακκ,
in µm2{s, and the direct advection coefficient βκκ and its perturbation β�κκ, both in
µm{s, obtained using a discretization consisting of ne � 28 elements, increasing the
stress from left to right. The yellow line corresponds to the initial condition and the
red one to the last time instance computed (t � 106 µs), intermediate approximations
are at equidistant time intervals.

A final observation relates to the magnitude of the maximum values of the required
crossed advection perturbation given in the third row of Figure 4.4. The maximum
values of this perturbation decrease as the mesh is refined. Its convergence towards
zero can be shown to be super-linear using more refined meshes for a fixed stress, and
considering the same mesh refinement procedure for different applied stresses.

The presented examples demonstrate that the presented stabilization technique suc-
cessfully renders stable numerical approximations irrespective of the local values of the
diffusion and advection coefficients being direct or crossed. This proves its flexibility
and adaptivity. More specifically, the second example reveals that the stabilization
technique is consistent, i.e. the perturbations magnitudes vanish as the mesh is refined.
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(a) αρρ, ne � 24. (b) αρρ, ne � 26. (c) αρρ, ne � 28.

(d) βρκ, ne � 24. (e) βρκ, ne � 26. (f) βρκ, ne � 28.

(g) β�ρκ, ne � 24. (h) β�ρκ, ne � 26. (i) β�ρκ, ne � 28.

Figure 4.4: Comparison of the time evolution of the direct diffusion coefficient αρρ,
in µm2{s, the crossed advection coefficient βρκ and its perturbation β�ρκ, both in
µm{s, obtained when applying a stress of τ � 10�0.5 GPa quadrupling the number
of elements composing the finite element mesh from left to right (16, 64 and 256
elements). The cyan line corresponds to the initial condition and the blue one to
the last time instance computed (t � 106 µs), intermediate approximations are at
equidistant time intervals.

4.3.4 Models and length scale comparison

This last section has the aim to show that the presented stabilization technique ren-
ders numerical approximations free of spurious oscillations, irrespective of the model
used: (i) Dogge or Gomma, (ii) with either a constant or variable length scale. As in
the previous section, only stabilized results are shown here.

Figure 4.5 depicts the numerical approximation of the geometrically necessary dis-
location density obtained using a mesh with 256 elements with a moderate applied
stress τ � 10�0.5 GPa for the four possible combinations obtained by changing the
model type (Dogge or Groma) and the length scale (constant or variable). In all four
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results shown, interactions between dislocations of different signs have been taken into
account.

The first row of Figure 4.5 shows the results obtained when using the Dogge model
while the second row corresponds to the Groma model. The left column depicts the
results obtained using a constant length scale while the right column contains the
results obtained with a variable length scale.

Although all the profiles are rather similar, some differences provide valuable infor-
mation for a comparative analysis. The first important observation is related to the
boundary layer width. When a constant length scale is used, this width tends to widen
significantly compared to results with a variable length scale, irrespective of the model
used (Dogge or Groma). As an obvious and immediate consequence of the smaller
boundary layers width for a variable length scale, the maximum values reached by
the dislocation density are an order of magnitude larger than those obtained with a
constant length scale.

A second important observation is the fact that individual numerical approximations
for the Groma model at different time instances can be well discerned. This is not the
case for the results obtained with the Dogge model. Only a few individual numerical
approximations at different time instances can be recognized with a constant length
scale, while such distinction is even more difficult when using a variable length scale.
This suggest that the Dogge model tends to accelerate the dislocation transport process
with respect to the Groma model; i.e. both models have different kinetics. At first
glance it could be argued that the slower kinetics in the Groma model may be caused
by the adopted diffusion threshold for the total dislocation density equation. However,
this difference in dislocation transport velocities was also observed when using positive
and negative dislocation densities as the main variables.

4.4 Rearrangement of convection and diffusion ma-
trices

The purpose of this section is to assess the performance of the presented stabilization
technique when the diffusion and convection matrices are defined in a way different
from the one used previously in Section 4.3. In order to carry out this assessment note
that, due to the non-linearity of the Equations (4.7-4.8), the definition of the diffusion
and convection matrices is not unique. It is also possible to define these matrices
differently from (4.9) as follows

A �

�
ρC4 κC5

κC4 ρC5

�
, and B �

�
0 C0

C0 0

�
. (4.13)

The numerical assessment is now repeated for this alternative definition and the cor-
responding results are presented below in a compact form.
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(a) Dogge, L � h. (b) Dogge, L � 1{?ρ.

(c) Groma, L � h. (d) Groma, L � 1{?ρ.

Figure 4.5: Dogge (top) and Groma (bottom) models with constant (left) and variable
(right) length scales: time evolution of the geometrically necessary dislocation density
κ in µm�2 for an applied stress τ � 10�0.5 GPa on a mesh composed of ne � 28

elements. The yellow line corresponds to the initial condition while the red one to
the last time instance computed (t � 106 µs), intermediate approximations are at
equidistant time intervals.

Figure 4.6 should be compared with Figure 4.1. The classical scheme results have
been re-computed as well. This has been done in order to assess the effect of the
rearrangement of the transport coefficients even when no stabilization technique is
used. The classical scheme results are shown in the left column and the stabilized
scheme results in the right column. The results in the first row, corresponding to
the smallest applied stress, are practically identical, for both classical and stabilized
schemes. For the next two rows, corresponding to τ � 0.1 GPa and τ � 1.0 GPa
respectively, the classical scheme results show the same oscillatory behaviour as their
counterparts depicted in Figure 4.1. The stabilized scheme results presented in Figure
4.6, like those depicted in Figure 4.1, are numerically well-behaved and free of any
spurious oscillation. However, it is possible to recognize that the current definition
of the diffusion and convection matrices leads to slightly smoother solutions. It is
suspected that this effect is caused by the fact that formerly convective terms are now
taken as diffusive terms.
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Figure 4.7 corresponds to Figure 4.2. It confirms that irrespective of the two tested
arrangements of the convection and diffusion matrices the results obtained with both,
the classical and stabilized, schemes are qualitatively the same. It confirms that sta-
bilization is necessary to obtain numerically well-behaved approximations and, more
importantly, that the proposed stabilization technique is able to render strictly pos-
itive numerical approximations free of spurious oscillations. The stabilized scheme
results, depicted in the right column, also confirm that the current arrangement of the
convection and diffusion matrices slightly increases the smoothness of the numerical
approximations obtained.

The comparison of Figure 4.8 with Figure 4.3 is not so straightforward and needs
further explanation. Since the direct convection coefficient βκκ formerly plotted in the
second row of Figure 4.3 is zero under the new arrangement of the transport matrices,
it is not shown here. Note from (4.13) that, while using the new arrangement, only
the crossed convection coefficient for the κ equation, i.e. βκρ, is non-zero. Since it is
constant, it is not shown here. The next row depicts the corresponding perturbation
β�κρ. Note that its spatial distribution is directly correlated with the direct diffusion
coefficient ακκ and that it is proportional to the applied stress.

Finally, Figure 4.9 corresponds to Figure 4.4. Under the new arrangement the
crossed convection coefficient for the ρ equation, i.e. βρκ, is constant. Therefore,
the second row of Figure 4.4, has been dropped in Figure 4.9. Its actual value is
βρκ � 1.162 � 10�6 for an applied stress of τ � 10�0.5 GPa. Note that the pertur-
bations of the crossed convection coefficient, i.e. β�ρκ, are practically the same as in
the former arrangement. It is argued that this is the case because it is the direct
diffusion coefficient that mostly influences the behaviour of this crossed convection
perturbation.

The results presented in this section allow concluding that irrespective of the two
tested arrangements of the convection and diffusion matrices the numerical approxima-
tion of the problem at hand requires the use of a stabilization technique able to deal
with its convection dominated character. Furthermore, they also allow to conclude
that the ability of presented stabilization technique to render numerical approxima-
tions free of spurious oscillations is not affected by this rearrangement of the convection
and diffusion matrices.

4.5 Conclusions and outlook

In this chapter a stabilization technique for general systems of coupled convection-
diffusion-reaction equations with constant coefficients has been proposed and demon-
strated to be effective for solving dislocation transport problems. Stabilization is
achieved irrespective of the set of field variables chosen in the numerical approxima-
tion. The stabilization technique was first used to handle the case of a single equation,
yielding unconditionally stable solutions through the enforcement of the discrete maxi-
mum principle. Additionally, it was shown that the numerical approximations obtained
with the stabilized scheme converges to the classical Bubnov-Galerkin solution when
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(a) Classical, τ � 10�2.0 GPa. (b) Stabilized, τ � 10�2.0 GPa.

(c) Classical, τ � 10�1.0 GPa. (d) Stabilized, τ � 10�1.0 GPa.

(e) Classical, τ � 100.0 GPa. (f) Stabilized, τ � 100.0 GPa.

Figure 4.6: Comparison of the total dislocation density ρ in blue and the geometrically
necessary dislocation density in red, both in µm�2 obtained with the classical (left)
and stabilized (right) scheme using a discretization with 16 elements, increasing the
stress τ from top to bottom.

the mesh Péclet number is small enough, a fact confirmed using two thorough and de-
tailed numerical assessments. Furthermore, this stabilization technique is applicable
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(a) Classical, ne � 24. (b) Stabilized, ne � 24.

(c) Classical, ne � 25. (d) Stabilized, ne � 25.

(e) Classical, ne � 26. (f) Stabilized, ne � 26.

(g) Classical, ne � 27. (h) Stabilized, ne � 27.

Figure 4.7: Comparison of the time evolution of the total dislocation density ρ in µm�2

obtained with the classical (left) and stabilized (right) scheme for an applied stress
τ � 10�0.5 GPa, doubling the number of elements composing the finite element mesh
from top to bottom. The cyan line corresponds to the initial condition and the blue
one to the last computed time instance (t � 106 µs), intermediate approximations are
at equidistant time intervals.
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(a) ακκ, τ � 10�2.0. (b) ακκ, τ � 10�1.0. (c) ακκ, τ � 100.0.

(d) β�κρ, τ � 10�2.0. (e) β�κρ, τ � 10�1.0. (f) β�κρ, τ � 100.0.

Figure 4.8: Time evolution of the direct diffusion coefficient ακκ, in µm2{s, and the
crossed convection perturbation β�κρ, in µm{s, obtained using a discretization con-
sisting of ne � 28 elements, increasing the stress from left to right. The yellow line
corresponds to the initial condition and the red one to the last time instance computed
(t � 106 µs), intermediate approximations are at equidistant time intervals.

(a) αρρ, ne � 24. (b) αρρ, ne � 26. (c) αρρ, ne � 28.

(d) β�ρκ, ne � 24. (e) β�ρκ, ne � 26. (f) β�ρκ, ne � 28.

Figure 4.9: Time evolution of the direct and crossed diffusion coefficients αρρ and αρκ,
in µm2{s, the crossed convection perturbation β�ρκ, in µm{s, obtained when applying
a stress of τ � 10�0.5 GPa quadrupling the number of elements composing the finite
element mesh from left to right (16, 64 and 256 elements). The cyan line corresponds to
the initial condition and the blue one to the last time instance computed (t � 106 µs).
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when either the advective or the divergence form is used for the spatial discretiza-
tion, making it highly flexible and general, and allowing to deal with different types
of complex boundary conditions.

It is emphasized that although the dislocation density transport equations of interest
in this chapter are transient, non-linear, and with variable coefficients, the stabilization
scheme properly deals with these challenges due to its element by element operative
mechanism. Its effectiveness in stabilizing the classical Bubnov-Galerkin scheme and
its consistency have both been demonstrated in the numerical simulations performed.
The effectiveness of the stabilization technique remains unaffected by the choice of the
dislocation transport model used (Dogge or Groma) or by the choice of a constant or
variable length scale. In this manner, it is expected this effectiveness remains unaltered
when accounting or not for interactions between dislocations of different signs.

As future work, it is planned to extend this stabilization technique to multidimen-
sional configurations and apply it to more general and complex dislocation transport
problems. For instance, the present chapter mainly focused on parallel edge disloca-
tions. More complex dislocation density transport models, such as those modelling
screw and mixed dislocations and other phenomena as annihilation could be investi-
gated as well. From the numerical perspective, an in depth mathematical analysis of
this stabilization technique may be valuable to provide additional insights and routes
for further improvements.
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Chapter 5

Multidimensional Extension

Abstract

Partial differential equations involving diffusive, convective and reactive terms ap-
pear in several branches of science. Often, several species or components interact
with each other, leading to strongly coupled systems of convection-diffusion-reaction
equations. The majority of such systems have to be solved on spatial domains with
complex geometries. These difficulties prohibit analytical solutions for problems of
practical interest. Approximated numerical solutions remain therefore the best strat-
egy for solving these problems. For many problems, the lack of sufficient physical
diffusion causes most traditional numerical methods to exhibit instability, with the
appearance of violent and non-physical node to node oscillations in the solutions, even
for the case of a single one-dimensional equation. When going to systems of equa-
tions, the situation becomes even harder due to the lack of fundamental principles
guiding numerical discretization strategies. Then, strategies must be developed in
order to obtain physically meaningful and numerically stable approximations. Such
stabilization techniques have been extensively developed for the single equation case.
By contrast, the multiple equations case has received little attention. The objective
of this chapter is to present such a stabilization technique and to apply it to systems
of multidimensional coupled convection-diffusion-reaction equations. Several of its at-
tractive characteristics are discussed, providing evidence of its versatility, effectiveness,
and efficiency through a computational assessment.

keywords.- Numerical instability, Stabilized finite element method, Convection-diffu-
sion-reaction equations, Coupled systems.

This chapter is based on: Hernández H., Massart T.J., Peerlings R.H.J., and Geers M.G.D. 2017.
A Stabilization Technique for Multidimensional Coupled Convection-Diffusion-Reaction Equations.
In preparation.
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5.1 Introduction

Partial differential equations including convection, diffusion, and reaction terms arise
naturally in many branches of engineering and science. Analytical solutions are only
available for very few simple cases that generally lack practical interest, even if they
provide valuable mathematical, physical, or computational insights. In real problems,
non-linearity, intricate boundary conditions, irregular geometries, heterogeneity in the
space and time dependence of the transport coefficients complicate the situation, ren-
dering them intractable by analytical tools. For this reason, numerical approximation
methods remain the best strategy for solving such problems.

In recent decades, finite differences, finite volumes, finite elements, spectral or mesh-
less methods, to name a few, have been applied to solve such convection-diffusion-
reaction equations with different degrees of success. Some of them have excelled for
specific problems, while not obtaining satisfactory results, or even completely failing,
for other problems. A general purpose numerical methodology therefore does not seem
to be available yet. The vast majority of the available numerical methods is success-
ful when dealing with a purely diffusive process. Their performance is drastically
reduced when either convection, reaction, or a combination of both overwhelms diffu-
sion, causing numerical instabilities. The numerical approximations are then usually
plagued by spurious oscillations near boundary and internal layers, and solutions can
exhibit negative values even if the underlying partial differential equation only accepts
non-negative solutions.

This stability problem is inherent to the numerical discretization scheme, and not
to the underlying partial differential equation. The magnitude of the oscillations
can decrease or even completely disappear when the discretization is refined, tending
towards a smooth numerical approximation. This suggests that the lack of numerical
stability and the subsequent oscillations appear when the discretization is too coarse
to adequately capture the physics of the governing transport mechanisms. This can
also be interpreted as a lack of richness of the approximation space to fully capture the
behaviour of the continuous model. In many cases, however, the refinement required
to get acceptable numerical approximations is so excessive that it becomes prohibitive
in computational terms, especially when multidimensional problems are considered.

Over the years, ad hoc discretization strategies or stabilization techniques have been
developed to overcome such difficulties. Finite difference method practitioners defined
several techniques such as upwinding schemes, the use of high order schemes, or the
use of fitted meshes [9, 25, 29, 52, 54]. Flux reconstruction, total variation diminishing
techniques, high order schemes, essentially non-oscillatory schemes, and their weighted
versions are now well established techniques in the finite volume method community
[68, 72, 76]. Streamline upwind Petrov-Galerkin, Galerkin least-squares, discontinu-
ous Galerkin schemes; bubble enrichment, algebraic sub-grid scale approaches, among
others, have been devised over the years in the finite element method community
[7, 13, 44, 56, 60].
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In view of the significant number of contributions dealing with instabilities, one may
get the incorrect impression that the issue has been fully solved. Yet, less attention
has been paid to systems of convection-diffusion-reaction equations, although they
arise naturally in branches of science as diverse as bio-mechanics [18], combustion
[5], computer science [30], ecology [45], economy [6], epidemiology [84], finance [17],
groundwater pollution [4], heat transfer [70], neuroscience [3], physiology [37], seepage
flow [71], solid mechanics [14] or turbulence [15]. The reason for this immaturity is the
lack of a maximum principle to guide the construction of the numerical approximation,
when going from a single transport equation towards systems of coupled equations in
the most general form [62].

In a contribution by Abrahamson, Keller, and Kreiss [1], a stabilization technique
has been proposed and successfully applied for systems of one dimensional convection-
diffusion-reaction equations in steady state, i.e. systems of ordinary differential equa-
tions. This technique is a direct extension of a previously developed upwinding scheme
for first order derivative terms [65, 69, 74, 83]. Additional progress in the approxima-
tions for systems of convection-diffusion-reaction equations until the late 1990’s was
mainly driven by finite difference method developments. The issue was addressed by
extending techniques previously used for discretizing a single equation. The most rep-
resentative approaches consist of the use of upwind finite differences for the convective
terms on layer-adapted meshes [29, 48]. In these papers, theoretical developments
have unravelled the conditions for a continuous maximum principle to be valid. In
other cases, compatibility conditions are derived and used instead. For finite volumes,
similar strategies were used. Discontinuous and high order approximations, upwind-
ing and adaptive meshes were the most successful techniques to deal with coupled
equations [16, 58]. In the finite element method context, streamline upwind Petrov-
Galerkin, Galerkin least-squares, algebraic sub-grid scale with high order elements
together with shock capturing techniques have been the most promising techniques
[4, 5, 14]. In general, and within all these methodologies, the case of coupled systems
of equations has been traditionally addressed using techniques previously successfully
applied in the case of a single equation. The same guiding strategy will be followed in
the present chapter.

The main objective of this chapter is to extend the present stabilization technique to
a system of multidimensional coupled convection-diffusion-reaction equations, which
is able to resolve the main shortcomings of the aforementioned stabilization techniques
such as mesh fitting or adaptation, the use of high order or discontinuous approxima-
tions or the introduction of excessive diffusive up-winded differences. This method-
ology extends an approach proposed recently for a single one-dimensional equation
[34], and for one-dimensional systems of equations [35], towards a multidimensional
system of coupled convection-diffusion-reaction equations. The methodology is con-
ceptually based on perturbing the original system of partial differential equations, the
discretized form of which on a particular discretization is on beforehand known to
yield an unstable approximation. This is achieved by modifying the system transport
coefficients to obtain a well behaved numerical approximation, with a minimal alter-
ation of the underlying physics [7, 43]. The required coefficient modifications are thus
optimally determined to be the smallest perturbations that still guarantee stability.
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These perturbations are chosen such that certain compatibility conditions analogous
to a maximum principle are satisfied. Once the computed perturbations are injected in
the classical Bubnov-Galerkin finite element method, they deliver smooth and stable
numerical approximations.

The chapter is organized as follows. In Section 5.2, the basic terminology and
notation are introduced. Subsequently, the classical Bubnov-Galerkin finite element
discretization is introduced in the most traditional way and important issues on the
treatment of the boundary conditions are discussed. Section 5.2.1 extends to mul-
tidimensional problems the stabilization technique originally developed for problems
in one dimension. Section 5.3 assesses the multidimensional stabilization technique
through three numerical examples with increasing generality. The first one is of the
convection-diffusion type, while the second one involves diffusion and reaction trans-
port mechanisms. Finally, the third problem is of the convection-diffusion-reaction
type with boundary and internal layers. Throughout this computational assessment
the reliability, robustness and flexibility of the stabilization technique are shown. Sec-
tion 5.5 closes this chapter by drawing its main conclusions, and discusses some future
perspectives.

5.2 Problem definition and finite element discretiza-
tion

In all generality, consider a system of m conservation equations with reaction terms
of the form

ρpq
Buq
Bt

�
B

Bxi
pFipq � γpquq � fp, (5.1)

where the use of repeated indices implies the traditional summation convention. The
main field variables to be approximated are up, the physical quantities to be trans-
ported, with Fip being their corresponding fluxes in the i-th direction with i � 1, 2, 3,
and fp P R are the source terms, all for p � 1, 2, � � � ,m. The reaction coefficients
γpq P R, for p, q � 1, 2, � � � ,m will be referred to as direct when p � q and as coupled
when p � q. Finally, ρpq P R� are the mass coefficients, which are assumed to vanish
when p � q.

The fluxes are composed of diffusive and convective contributions

Fip � �αijpq
Buq
Bxj

� βipquq. (5.2)

Here αijpq P R� are the diffusion coefficients and βipq P R are the convection coeffi-
cients. It is emphasized that the indices i, j � 1, 2, 3 are associated with the spatial
dimensions. The diffusion and convection coefficients will also be referred to as di-
rect or coupled using the above mentioned convention. Throughout this section all
coefficients will be regarded as constants.
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The direct substitution of the flux given by Equation (5.2) in the general conserva-
tion Equation (5.1) leads to

ρpq
Buq
Bt

�
B

Bxi

�
�αijpq

Buq
Bxj

� βipquq



� γpquq � fp. (5.3)

which will be referred to as the divergence form of the conservation equation due to
the fact that integration over the whole domain involves, via the divergence theorem,
the total flux across the boundary.

Expanding the spatial derivative on the terms composing the flux and taking into
account that all physical coefficients are constants, one gets

ρpq
Buq
Bt

� αijpq
B2uq
BxiBxj

� βipq
Buq
Bxi

� γpquq � fp. (5.4)

which will be referred to as the advective form because of the direct interpretation of
the first order spatial derivative term as representing convection.

For the sake of clarity in the notation, a single weighting function w for all the
m equations is used in what follows. Multiplying Equation (5.1) by the weighting
function w, and integrating over the whole spatial domain, the following weighted
residual form is obtained»

Ω

wρpq
Buq
Bt

dΩ�

»
Ω

w
B

Bxi
pFipq dΩ�

»
Ω

wγpquqdΩ �

»
Ω

wfpdΩ, (5.5)

Integration by parts of the second term in the left hand side yields»
Ω

wρpq
Buq
Bt

dΩ�

»
Ω

Bw

Bxi
FipdΩ�

»
Γ

wFipnidΓ�
»

Ω

wγpquqdΩ �

»
Ω

wfpdΩ, (5.6)

with n being the unit vector normal to the boundary Γ. Note again the non-standard
form in which integration by parts has been performed taking into account terms dif-
ferentiated to both the first and second order in space. The purpose of this procedure is
to easily incorporate natural boundary conditions of the Neumann type in the absence
of convective terms, i.e. βipq � 0, or of the Robin type in the more general case when
at least one of the convection coefficients βipq does not vanish. The Robin boundary
condition involves the total flux across the boundary, and not only its diffusive part,
and is more easily treated using the divergence form (5.3) that will be used in the
remainder of the chapter.

By expressing the weighting function w and the variable up as linear combinations
of their corresponding nodal values with the use of the interpolation functions Wk and
Pk associated with the ne nodes within each finite element and requiring the weak
form 5.6 to hold for any wk, one obtains after assembly the following global system of
algebraic equations

M pq 9uq � pDpq �C pq �Rpqquq � f p, (5.7)
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where M pq are the global mass matrices, Dpq the global diffusion matrices, C pq the
global convection matrices and Rpq the global reaction matrices. The nodal values of

the discretized fields are collected in the m vectors up �
�
u
p1q
p , u

p2q
p , � � � , u

pn�1q
p , u

pnq
p

�T
(for p � 1, 2, � � � ,m), with n being the total number of nodes in the finite element
discretization. Furthermore, these m numerical approximations can be collected in a
single unknown vector as

u �
�
u
p1q
1 , u

p2q
1 , � � � , u

pnq
1 , u

p1q
2 , u

p2q
2 , � � � , u

pnq
2 , � � � , up1qm , up2qm , � � � , upnqm

�T
, (5.8)

which will be simply referred to as the numerical approximation. Finally f p takes into
account the m source terms fp and associated boundary conditions.

5.2.1 Multidimensional extension of the stabilization technique

In this section the main objective of this paper is pursued, namely the extension of
the stabilization technique, originally devised for the one-dimensional case, to multi-
dimensional configurations. This is done by addressing the two-dimensional case, the
three-dimensional case being a straightforward extension.

Previous extensions to multidimensional configurations of stabilization techniques
for convection-diffusion problems, which were initially developed in the context of one
dimensional problems, have been proposed paying special attention to avoiding the
addition of excessive artificial diffusion. For example, two-dimensional implementa-
tions of the SUPG method make use of an auxiliary coordinate system with one of its
axes aligned with the direction in which the physical convection acts. This allows de-
coupling the original two-dimensional convection-diffusion problem into two problems,
i.e. a one-dimensional convection-diffusion problem complemented by a second pure
diffusive problem. The originally developed one-dimensional SUPG method is then
applied to the former problem, using as the discretization size the maximum possible
length inscribed inside the finite element in the direction of the convection velocity.
Meanwhile, the second, purely diffusive problem does not need any stabilization [7].

The aforementioned strategy is applied when dealing with the multi-dimensional
single equation case, i.e. when m � 1, together with the one-dimensional stabiliza-
tion technique based on coefficient perturbation proposed in [34]. Moreover, when the
convection and reaction coupling coefficients vanish, the same strategy can also be
successfully applied to the stabilization technique presented in [35] since in this case
the equations are in fact decoupled. Unfortunately this does not hold when coupling
convection and reaction coefficients are introduced, since it is then impossible to de-
fine a single convection velocity and its acting direction. In this situation it is also
impossible to fix a single auxiliary coordinate system with one of its axes aligned with
the convection velocity.

Therefore, even if this carries the risk of adding more than the strictly needed arti-
ficial diffusion to obtain a stable numerical approximation, the stabilization technique
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developed for the one-dimensional case is applied in a similar manner as the vast ma-
jority of the up-winded finite difference schemes to multidimensional configurations.
When using such up-winding, it is applied in each mutually orthogonal direction, x and
y, using their corresponding physical advection velocities, βx and βy, not considering
each other in the stabilization process. Thus, this procedure treats a multi-dimensional
problem as a set of mutually independent one-dimensional convection-diffusion prob-
lems, each one aligned with the Cartesian coordinate axis. It is common practice in
the finite difference context to have structured discretizations aligned with the coor-
dinate axis, thus facilitating the use of this strategy. In the finite element context
this restriction is loosened allowing the treatment of problems having irregular and
complicated geometries as spatial domains. Thus the approach used here should allow
accommodating irregular and unstructured meshes.

The implementation thus considers a one-dimensional convection-diffusion-reaction
problem, with a discretization size `x, diffusion coefficients αxxpq, convection coeffi-
cients βxpq and reaction coefficients γpq, for p, q � 1, 2, � � � ,m. Then, the stabilization
technique for systems of coupled convection-diffusion-reaction equations is applied as
explained in Section 3.3.1 through the computation of the coefficient perturbations for
the x direction physical coefficients of the original problem. Then, a second convection-
diffusion problem is considered, with a discretization size `y, diffusion coefficients αyypq
and convection coefficients βypq, for p, q � 1, 2, � � � ,m, this time the stabilization tech-
nique is used to determine the coefficient perturbations for the y direction physical
coefficients. These discretization sizes, `x and `y, are taken as the maximum possible
length inscribed inside the finite element along the corresponding coordinate axes, as
sketched in an arbitrary quadrilateral finite element in Figure 5.1. This definition of
the discretization sizes, `x and `y, has been adopted after carrying out a thorough
numerical assessment specifically conducted to such a task.

5.3 Applications and computational assessment

This section presents three numerical examples to illustrate and assess the effi-
ciency and consistency of the developed stabilization technique. Its main goal is to
demonstrate the ability of the presented stabilization technique to successfully handle
different types of problems, independently of the physics underlying the considered
system of differential equations.

This goal is pursued by presenting a thorough and detailed analysis of the numerical
results obtained for three problems taken from different references and adapted to suit
the purpose of evaluation. In all cases the convection and reaction coefficients and the
boundary conditions have been taken as close as possible to those presented in the
original references. Modifications have been made only for the sake of uniformity in
the assessments, and more importantly because the boundary conditions chosen here
trigger more easily the development of sharp boundary layers, making the problems
more challenging for the stabilization technique. The domain considered is always the
unit square.
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Figure 5.1: Discretization sizes in the x and y directions in an arbitrary quadrilateral
finite element.

The assessment is conducted by modifying only the parameter ε controlling the
amount of diffusion and the discretization size `. Once these parameters are set for a
particular problem, they are not changed, i.e. for a particular simulation the diffusion
parameter is constant over the whole domain discretized with a uniform mesh. The
parameter ε is always chosen as ε � 10�j with j � 0, 1, 2, .... Thus, as j increases
the problem becomes less dominated by diffusion, and its numerical approximation
becomes more prone to numerical instabilities. In the present study, without loss of
generality in the assessment of the stabilization technique, no transverse diffusion is
considered, i.e. αijpq � 0 @ p, q � 1, 2, � � � ,m when i � j. The mesh is always uniform
and made of square, four-noded quadrilaterals having linear Lagrange interpolation
functions. Since all the discretizations used in the present study have the same number
of elements in each direction, a single parameter suffices to characterize each mesh,
i.e. `x � `y � ` � n�1.

Regardless of the use of the presented stabilization technique, once the system of m
differential equations has been discretized, a system of m�n linear algebraic equations
has to be solved. For this purpose the iterative BiCGStab method has been used
because of its efficiency when dealing with large and sparse systems [77]. In all cases,
the maximum number of allowed iterations is set equal to the number of nodes in the
finite element mesh, although the iteration process is stopped as soon as ||r pkq||{||b||  
εs � 10�6 is reached, with r pkq the k-th residual vector and b the right hand side
vector. No preconditioning is used.
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5.3.1 Convection-diffusion system

In this section, the attention is focused on a problem without reaction terms, but
with a full convection matrix in the x direction, i.e. containing cross convection
terms. The convection matrix in the y direction is diagonal. It has been chosen
here to perturb only the diagonal entries of the diffusion matrices when p � q for each
dimension i � x, y, in order to capture the effect of the stabilization technique in a
single coefficient perturbation, thus rendering its effect easy to scrutinize.

The example treated here is base on an originally one-dimensional problem taken
from [55], where it was treated using upwind finite differences on a Shishkin mesh. It
is the simplest case among all examples solved in the present chapter, where all the
diffusion coefficients are equal and the convection coefficients and source terms are all
taken as constants.

The system, consisting of m � 3 differential equations, extended to two dimensions
by adding diffusive and convective terms in the y direction, reads as follows
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�
� , (5.9)

with boundary conditions at the left and top edges as upx � 0, 0   y   1q � up0 ¤
x ¤ 1, y � 1q � r�1, 4,�1sT , and at the right and top edges as upx � 1, 0   y   1q �
up0 ¤ x ¤ 1, y � 0q � r1, 1, 1sT .

Figure 5.2 shows the numerical approximations obtained for u1, u2, and u3 using
a mesh consisting of n � 16 elements in each direction. The results obtained with
the classical Bubnov-Galerkin method are depicted in the left column, while the right
column shows the results obtained with the stabilization technique. These numerical
schemes are respectively referred to as classical and stabilized.

In the first row of Figure 5.2; for ε � 1, i.e. having diffusion coefficients αppii � 1 for
p � 1, 2, 3 and i � x, y, the solutions of the classical and stabilized schemes are practi-
cally identical. This observed smooth behaviour was expected since the direct Péclet
numbers, defined in this case for each direction as Pex � p`x{2εq rβx11, βx22, βx33s

T and
Pey � p`y{2εq rβy11, βy22, βy33s

T , are smaller than one: Pex � r0.0935, 0.125, 0.125sT

and Pey � r0.25, 0.0625, 0.0935sT .

The situation is radically changed when moving to the next row; for ε � 10�3, in
which spurious oscillations appear in the approximation obtained with the classical
scheme. This time the direct Péclet numbers are multiplied by 103 with respect to the
values mentioned above; and therefore such an oscillatory behaviour of the classical
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solution should be expected. In the right column the effectiveness of the proposed
stabilization scheme in removing the spurious oscillations is clearly illustrated. The
main features in the boundary layers are properly captured.

Moving to the last row in the left column, it can be seen that the amplitude of
the oscillations increases as the problem gets more dominated by convection. On the
other hand, the approximations obtained by the stabilized scheme, in the right column,
remain free of spurious oscillations. They adequately capture the boundary layers and
abrupt changes in the solutions for the whole range of diffusion coefficients tested.

As no analytical solution is available for this problem, the accuracy of the stabi-
lization scheme is evaluated by computing for each mesh having n elements in each
direction the Euclidean norm of the two-mesh difference defined as

Dn � ||ūp2nq � upnq||2, (5.10)

where the bar means that the numerical approximation on a mesh containing 2n
elements in each direction is restricted to the same positions as the nodes of the mesh
made of n elements in each direction.

Figure 5.3 depicts Dn for the classical scheme using dashed lines and the stabi-
lized scheme in solid lines for different values of the diffusion parameter ε � 10�j for
j � 0, 1, 2, 3, as a function of the number of elements in each direction n. First note
that when the problem is dominated by diffusion, i.e. ε � 1, corresponding to the
darkest lines at the bottom, the classical and stabilized schemes provide practically
the same results. The fact that these lines are almost identical demonstrates that,
for diffusion dominated problems not showing spurious oscillations in the numerical
approximations, the proposed stabilization technique does not introduce any notice-
able perturbation; it becomes active only when the problem becomes dominated by
convection.

In the same plot, it is observed that the magnitude of the two-mesh differences
corresponding to the classical scheme (dashed lines) keeps growing when decreasing the
diffusion parameter. This indicates that as the problem becomes more dominated by
convection, the classical scheme is unable to yield accurate numerical approximations.
By considering the solid lines in the same plot it can be seen that the stabilized scheme
renders numerical approximations with two-mesh differences that are always bounded,
irrespective of the magnitude of the diffusion parameter, as suggested by the coincident
lines corresponding to ε � 10�j for j � 2, 3 for coarse discretizations (low values of n).
The superiority of the stabilized scheme in capturing the main features of the solution
introduced by convective effects, such as boundary layers, is evidenced by the fact that
all dashed lines, for the classical scheme, are above the corresponding solid lines.

In this plot it is also easy to perceive how the convergence rate of the stabilized
scheme is affected when decreasing the diffusion parameter. The curve corresponding
to the diffusion dominated case, i.e ε � 1, exhibits a second order convergence rate. On
the other hand, the curve corresponding to the more convection dominated case, i.e
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(a) Classical, ε � 1. (b) Stabilized, ε � 1.

(c) Classical, ε � 10�3. (d) Stabilized, ε � 10�3.

(e) Classical, ε � 10�6. (f) Stabilized, ε � 10�6.

Figure 5.2: Numerical approximations for the boundary value problem associated with
Equation (5.9) obtained using a mesh consisting of n � 16 elements in each spatial
dimension, with decreasing diffusion from top to bottom, for the classical (left) and
stabilized (right) schemes.

ε � 10�3, exhibit only first order convergence rate. Moreover, note that when n � 10
the curve corresponding to the diffusion parameter ε � 10�1 starts to switch from a
first order convergence rate towards to a second order convergence rate. Additionally,
note that the curve corresponding to ε � 10�2 switches from first to second order
convergence rate when the discretization reaches n � 100 elements in each direction.
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Figure 5.3: Euclidean norm of the two-mesh difference for the problem of Equation
(5.9). The classical scheme results are shown with dashed lines and stabilized scheme
results with solid lines. Each curve corresponds to the diffusion parameters ε � 10�j

with j � 0, 1, 2, 3, as a function of the number of elements in each direction n.

These observations allow concluding that when the discretization is not fine enough
to capture the sharp changes in the solution due to boundary or internal layers, the
stabilized scheme, despite having a first order convergence rate, is able to render
adequate numerical approximations. This is not the case for the classical scheme
approximations which exhibit higher two-mesh differences Dn than those obtained
by the perturbation-based stabilization technique. Once the discretization is able
to capture these sharp changes, the stabilized scheme will exhibit a second order
convergence rate.

Finally, Figure 5.4 depicts the diffusion perturbations for the first equation in the
y direction, i.e. for α�yy11, as a function of the number of elements in each direction
n for several values of the diffusion coefficient. As expected, the perturbations au-
tomatically increase as the problem becomes more dominated by convection. This is
reflected by the fact that the brighter lines, which represent problems more dominated
by convection, are always above the darker lines, which represent diffusion dominated
problems. More importantly, this plot reveals that, when ε � 10�2�100 the perturba-
tions decrease quadratically as the mesh is refined, demonstrating the consistency of
the proposed stabilization technique in this range of values of the diffusion parameter.
For lower diffusion parameters, in the range ε � 10�3 � 10�8 this decrease is only
linear. The same conclusions can be obtained irrespective of the equation, p � 1, 2, 3,
or direction, i � x, y, considered.
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Figure 5.4: Diffusion perturbations needed to deal with the convective term in the
y direction in Equation (5.9) for ε � 10�j with j � 0, 2, � � � , 8 as a function of the
number of elements in each direction n.

5.3.2 Diffusion-reaction system

Next, a diffusion-reaction type problem is considered. This problem, originally pre-
sented in [52] for a one-dimensional domain, introduces two new features: the reaction
and source coefficients are dependent on the spatial coordinate and the direct diffusion
coefficients differ. Even if the spatial variability of the reaction coefficients is mild,
this allows assessing the proposed stabilization technique in handling common difficul-
ties faced by traditional stabilization techniques [1]. Strictly speaking, the difference
in the diffusion coefficients is not a serious difficulty since, before discretization, the
differential equations can be scaled in such a way that the previous case (diffusion
matrices equaling a scalar multiplied with the identity matrix) is recovered. However,
this scaling may not be desired if the original physical model is to be preserved. As for
the first example, the choice was made to stabilize the problem using direct diffusion
perturbations only.

The system consisting of two differential equations is extended with respect to [52]
towards two dimensions by simply adding a diffusive term in the y direction. It is
given by
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, (5.11)
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with homogeneous Dirichlet boundary conditions on the entire boundary.

Figure 5.5 shows in each plot the numerical approximations obtained using a mesh
with n � 16 elements in each direction, varying the diffusion parameter row by row.
The classical results are depicted in the left column and the stabilized results in the
right column.

As expected, the classical and stabilized results are practically identical in the first
row, corresponding to the diffusion dominated case. When reducing the diffusion
parameter by three orders of magnitude, oscillations start to appear in the numerical
approximations for u1, obtained by the classical scheme. Such oscillations appear
close to the boundaries. Moreover, where these boundary layer oscillations meet in
the corners they generate easily recognisable peaks. The stabilized scheme (right
column) effectively removes the edge oscillations and the corner peaks generated by
their interaction.

By moving to the third row, the amplitude of the above mentioned spikes increases
for the classical scheme because the problem is more dominated by reaction. The
corresponding numerical approximations obtained with the stabilized scheme are free
of spurious oscillations, adequately capture the sharp changes at the boundary layers,
and do not exhibit any peaks in the corners.

Note that since the perturbations of the coefficients are computed in each element,
the proposed stabilization scheme is able to handle spatially heterogeneous transport
coefficients. This is particularly important when dealing with time dependent coeffi-
cients or even with non-linear transport equations. This same feature allows handling
variable mesh sizes, making the stabilization technique highly versatile and flexible.

5.3.3 Convection-diffusion-reaction system

In the final example, a general system involving all transport mechanisms is consid-
ered. Being able to treat such a challenging problem involving convection, diffusion
and reaction is the main goal in developing the presented stabilization technique.

The original one-dimensional problem considered in [10] is defined and solved there
using an upwind finite difference scheme. It considers a case in which the diffusion
matrices are isotropic. Again the two-dimensional extension is achieved by adding the
diffusive and convective terms in the y direction. The resulting equation reads
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(a) Classical, ε � 1. (b) Stabilized, ε � 1.

(c) Classical, ε � 10�3. (d) Stabilized, ε � 10�3.

(e) Classical, ε � 10�6. (f) Stabilized, ε � 10�6.

Figure 5.5: Numerical approximations for the boundary value problem associated with
Equation (5.11) obtained using a mesh consisting of n � 16 elements in each spatial
dimension, with decreasing diffusion from top to bottom, for the classical (left) and
stabilized (right) schemes.

The convection coefficients are piece-wise constant and given by

rk �

#
pk � 1qpλ1 � λ2q � c if 0 ¤ x ¤ b

pk � 1qλ1 � c if b   x ¤ 1
. (5.13)
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The original boundary conditions have been modified for consistency with the previous
problems and to generate boundary layers challenging the stabilization scheme. They
have been taken as upx � 0, 0 ¤ y ¤ 1q � r0.25, 0, 0.1sT and upx � 1, 0 ¤ y ¤ 1q �
r0, 0, 0sT . Homogeneous Robin boundary conditions are imposed on the bottom and
top edges, i.e. Fipni � 0, for i � 1, 2, and p � 1, 2, 3, on ΓR � t0   x   1, y � 0u Y
t0   x   1, y � 1u. All diffusion and discretization parameters are the same as in the
previous problem. The parameters in the convection and reaction matrices are taken
as µ1 � 1, µ2 � 0.5, λ1 � 1, λ2 � 0.4, c � 1.2, b � 0.3, and η � 1.0. The evaluation
of the convection coefficients on the two different spatial regions yields: rp0 ¤ x ¤

0.3q � r�1.2, 0.3, 1.8sT for the left region and rp0.3   x ¤ 1.0q � r�1.2,�0.2, 0.8sT for
the right region. Note that the abrupt change in the last component only affects its
magnitude, while the convection direction remains unchanged. In fact, the variation is
more drastic in the second component, which changes its sign. Therefore, in addition
to boundary layers, internal layers are expected.

Figure 5.6 shows the numerical approximations in the same format as previously. In
the diffusion dominated case, in the first row, the classical and stabilized results are
practically identical. Note that u1 is convected towards the left since its corresponding
convection coefficient in the x direction is negative on the whole spatial domain and at
the same time it is also convected towards the top because the convection coefficients
in the y direction are positive. Note too that u3 is convected to the right because
its convection coefficient in the x direction is positive on the whole domain. Thus
u1 and u3 exhibit boundary layers at the left and right boundaries respectively. The
situation is different for u2 since its boundary values on the lateral edges are the same
and its convection coefficients in the x direction have opposite signs in the two regions
separated by a vertical line at x � b, pointing towards the interior of the domain.
Therefore, any quantity of u2 present in the spatial domain, and generated through
the reaction terms, will be transported towards the line x � b in which the convection
coefficient changes sign, and towards the top edge due to the positive convection
coefficients in the y direction. This generates a double internal layer for u2 itself, but
additionally could also generate internal layers for u1 and u3 through the reaction
coupling.

The above mentioned phenomena are more pronounced when moving to the next
row, in which the diffusion has been weakened by three orders of magnitude. From
these diffusion values, the approximations obtained with the classical scheme are
plagued by spurious oscillations. The stabilized scheme solutions are free of such
instabilities and adequately capture the boundary and internal layers. Moving to the
third row, the classical results also show such oscillatory behaviour. This is not the
case for the stabilized scheme which still renders smooth numerical approximations.
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(a) Classical, ε � 1. (b) Stabilized, ε � 1.

(c) Classical, ε � 10�3. (d) Stabilized, ε � 10�3.

(e) Classical, ε � 10�6. (f) Stabilized, ε � 10�6.

Figure 5.6: Numerical approximations for the boundary value problem associated with
Equation (5.12) obtained using a mesh consisting of n � 16 elements in each spatial
dimension, with decreasing diffusion from top to bottom, for the classical (left) and
stabilized (right) schemes.
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5.4 Comparison with other techniques

The purpose of this section is, as done in Section 3.5 for one-dimensional problems,
to perform a comparative study of the presented stabilization technique with other
well-known and established methods, but this time for two-dimensional configurations.

In order to extend the general framework for the application of the SUPG, GLS
and SGS methods to multiple dimensional configurations, the diffusion, convection
and reaction operators originally defined for one-dimensional problems in (3.36) are
re-written for multiple dimensions as

LD puq � �
B

Bxi

�
Aij

Bu

Bxj



, LC puq � B i

Bu

Bxi
, and LR puq � Gu, (5.14)

where repeated indices imply the traditional summation convention.

It is possible to write Equation (5.4) in steady state by using the general transport
operator L defined in the same way as done for one-dimensional problems in Equa-
tion (3.37). It then follows that the associated residual is defined as already done in
Equation (3.38). Moreover, after application of the weighted residuals statement and
the addition of the stabilization term, an expression identical to (3.39) is obtained.

Therefore, it remains to extend the differential operators P used for the different
methods when dealing with multi-dimensional configurations [14]. For the SUPG
method it can be written as

PSUPG pwq � LT
C pwq � BT

i

Bw

Bxi
. (5.15)

The operators for the GLS and SGS methods are in turn written as

PGLS pwq � LT pwq � �
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Bxi

�
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i
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�GTw. (5.16)

and

PSGS pwq � �L� pwq �
B

Bxi

�
AT
ij

Bw
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�BT

i

Bw

Bxi
�GTw. (5.17)

The definition of the matrix of stabilization parameters given by Equation (3.44) is
left unchanged, only the Ao and Bo matrices are re-defined as

Ao � pAijAijq
1{2

, Bo � pB iB iq
1{2

, and Go � pGGq
1{2

. (5.18)

5.4.1 Convection-diffusion system

The comparison of stabilization techniques is done in the same way as in Section 3.5,
although this time only the numerical approximations obtained using a discretization
consisting of n � 16 elements in each spatial direction are depicted.
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(a) Perturbation approach, ε � 10�3. (b) SUPG, ε � 10�3.

(c) GLS, ε � 10�3. (d) SGS, ε � 10�3.

Figure 5.7: Numerical approximations for the boundary value problem associated with
Equation (5.9) obtained using a mesh consisting of n � 16 elements in each spatial
dimension and a diffusion parameter of ε � 10�3, for the proposed stabilized scheme
(top-left), the Streamline Upwind Petrov-Galerkin (top-right), Galerkin Least-Squares
(bottom-left), and Sub-Grid Scale (bottom-right) methods. The corresponding clas-
sical results are depicted in Figure 5.2(c) and the perturbation approach results are
repeated from Figure 5.2(d).

Figure 5.7 shows the results obtained for the convection-diffusion problem given
by Equation (5.9) with a diffusion parameter ε � 10�3. All the methods, except
the coefficient perturbation scheme, render solutions with ridges along the boundary
layers. This effect can be easily observed along the edge p0 ¤ x ¤ 1, y � 1q for u1

and u3. Such an effect has been reported previously by Donea and Huerta [23] for the
single equation case and by Codina [14] in the multiple equations case.

The presented perturbation-based stabilization technique is able to provide numer-
ical approximations that better capture the sudden change of the solution close to the
boundary layers exhibiting neither ridges nor spurious oscillations.
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5.4.2 Diffusion-reaction system

Now, the attention is turned to the diffusion-reaction problem with a source term
given by Equation (5.11). The results for the two-dimensional case presented here
confirm the conclusions obtained in Section 3.5.2 for the one-dimensional configuration.
These results are depicted in Figure 5.8.

The SUPG and GLS approximations clearly exhibit spurious oscillations. Indeed,
the SUPG solution of this diffusion-reaction problem is identical to the classical solu-
tion since all the convection matrices B i vanish identically and thus the differential
operator PSUPG vanishes as well. Only the proposed perturbation-based stabilization
technique and the SGS method are able to provide numerical approximations free of
spurious oscillations. Note that this time the over-diffusivity introduced by the SGS
method in comparison with the presented stabilization technique is not as evident as
in the one-dimensional case.

5.4.3 Convection-diffusion-reaction system

The results of the most challenging problem addressed in this chapter, involving
convection, diffusion and reaction, are depicted in Figure 5.9. Both the SUPG and GLS
methods deliver numerical approximations which exhibit ridges of the same kind as
observed for the convection-diffusion case. This effect is most notable in the numerical
approximation of u1. Moreover, spurious oscillations appear close to the internal layers
present in u2. The SGS method, as in the one-dimensional case, completely fails to
render acceptable numerical approximations.

Concluding remarks

The results obtained in this comparative study for two-dimensional configurations
confirm those obtained for the one-dimensional case presented in Section 3.5: the pre-
sented perturbation-based stabilization technique, unlike any of the existing methods
tested, is able to render numerical approximations free of spurious oscillations for the
three different problems tested.

5.5 Conclusions and outlook

In this chapter, a stabilization technique for general systems of coupled convection-
diffusion-reaction equations with constant coefficients has been formulated and success-
fully applied to two-dimensional configurations. For the uncoupled linear convection-
diffusion case the proposed stabilization technique recovers the approach presented in
[34]. The stabilization technique was initially developed in [34] for a single equation,
yielding unconditionally stable solutions based on the discrete maximum principle.
The scheme achieves stability by effectively perturbing the transport coefficients of
the equation to be discretized. Such perturbations are optimally determined to be
the smallest ones required to obtain smooth and stable approximations. Furthermore,
it was shown that the numerical approximations obtained with the stabilized scheme
converge to the classical Bubnov-Galerkin solution when the mesh Péclet number is
small enough, a fact confirmed using a thorough and detailed numerical assessment.
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(a) Perturbation approach, ε � 10�3. (b) SUPG, ε � 10�3.

(c) GLS, ε � 10�3. (d) SGS, ε � 10�3.

Figure 5.8: Numerical approximations for the boundary value problem associated with
Equation (5.11) obtained using a mesh consisting of n � 16 elements in each spatial
dimension and a diffusion parameter of ε � 10�3, for the proposed stabilized scheme
(top-left), the Streamline Upwind Petrov-Galerkin (top-right), Galerkin Least-Squares
(bottom-left), and Sub-Grid Scale (bottom-right) methods. The corresponding clas-
sical results are depicted in Figure 5.5(c) and the perturbation approach results are
repeated from Figure 5.5(d).

An illustrative application demonstrates that the general convection-diffusion-reaction
case also inherits these desirable properties. The stabilization technique is applicable
regardless whether the advective or the divergence form of the partial differential equa-
tion is used for the spatial discretization, making it highly flexible and general and
able to accommodate different types of complex boundary conditions.

Although originally developed for one-dimensional coupled equations with con-
stant coefficients in [35], the stabilization technique has here been successfully ap-
plied to equations with spatially variable convection and reaction coefficients in two-
dimensional domains. This makes the method particularly versatile for problems with
time dependent or even non-linear transport coefficients, including also the diffusion
coefficients. Furthermore, since the perturbations required to render smooth numer-
ical approximations are computed element by element, this stabilization technique is
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(a) Perturbation approach, ε � 10�3. (b) SUPG, ε � 10�3.

(c) GLS, ε � 10�3. (d) SGS, ε � 10�3.

Figure 5.9: Numerical approximations for the boundary value problem associated with
Equation (5.12) obtained using a mesh consisting of n � 16 elements in each spatial
dimension and a diffusion parameter of ε � 10�3, for the proposed stabilized scheme
(top-left), the Streamline Upwind Petrov-Galerkin (top-right), Galerkin Least-Squares
(bottom-left), and Sub-Grid Scale (bottom-right) methods. The corresponding clas-
sical results are depicted in Figure 5.6(c) and the perturbation approach results are
repeated from Figure 5.6(d).

locally adaptive, properly handling variable element sizes or unstructured meshes. Fi-
nally, there is no need to pre-compute, adapt, or change the mesh at any stage of
the computation. This flexibility also removes the need for ordering or scaling of the
system of differential equations prior to discretization.

For future work it is intended to evaluate the effectiveness of the assessed stabi-
lization technique on irregular domains discretized by unstructured meshes in order
to exploit the full potential offered by the geometric flexibility of the finite element
method. Although the present chapter mainly focused on constant diffusion and space
dependent convection and reaction coefficients in the steady state regime, variable
diffusion coefficients, time dependency of the transport coefficients, and non-linearity
will be investigated in steady and transient states.
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Devising a strategy to apply the stabilization technique to multidimensional config-
urations without the need to use multiple discretization sizes decoupling the problem
at hand would be a landmark progress which would allow eliminating the risk of in-
troducing any excessive artificial diffusion. Pursuing the derivation, implementation,
and assessment of such a strategy is one of the most imperative tasks to be carried
out in further work. Such a strategy would endow the stabilization technique with the
desirable property of being invariant under rotation of the coordinate axes.

In this chapter, the effect of the stabilization technique on the general properties of
the system of algebraic equations after discretization has not been addressed. In partic-
ular, the spectral properties of this system may guide one to more effective strategies
to solve it, especially when using iterative methods combined with preconditioning
techniques. This will be the subject of forthcoming work.
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Chapter 6

Stabilized Two-dimensional
Strain-Gradient Plasticity

Abstract

This chapter addresses the stability of a two-dimensional crystal plasticity model
based on dislocation transport involving multiple slip systems at the continuum scale.
The dislocation transport model considered is generic, covering most cases of models
presented in the literature. Dislocation transport is coupled with mechanical quasi-
static equilibrium. The practical implementation of this coupling is detailed. It is
shown that the dislocation transport problem requires the solution of systems of cou-
pled convection-diffusion differential equations, even when only a single slip system
is considered. When additional slip systems are active it is possible to establish a
coupling between them depending on the physical assumptions adopted. The form of
the natural boundary conditions of the dislocation transport problem, and the non-
linearity of the dislocation transport equations require a highly flexible and versatile
stabilization technique able to obtain physically meaningful results. The previously
developed stabilization technique will be applied for this purpose. This is the subject
of this chapter, showing that the proposed stabilization approach successfully renders
strictly positive, smooth and spurious oscillations free numerical approximations.

keywords.- Stain-gradient plasticity, Numerical instability, Stabilized finite element
method, Convection-diffusion-reaction equations.
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6.1 Introduction

In this last chapter the full potential of the developed stabilization technique is
exploited by coupling mechanical equilibrium with dislocation transport in order to
obtain a non-local strain-gradient crystal plasticity theory able to take into account
size effects.

This coupling of the mechanical equilibrium and the dislocation transport problems
follows a well established approach developed for small-strain plasticity problems in
which dislocations are represented as line defects able to move only on specific glide
planes [28].

In the present implementation, the possibility of activating multiple glide planes is
considered. On each of these glide planes two edge dislocation densities will be consid-
ered, yielding two transient coupled partial differential equations involving convective
and diffusive terms. The implementation allows for interactions between different slip
systems, i.e. inter-glide systems coupling. This makes the stabilization technique de-
veloped for systems of coupled convection-diffusion-reaction equations well suited for
this particular problem.

The form of the natural boundary conditions of the dislocation transport problem
(e.g. no dislocation flux through impenetrable boundaries), its application to multi-
phase materials with distinct properties, and the non-linear nature of the dislocation
transport equations with non-homogeneous and time dependent transport coefficients,
all require a highly flexible and versatile stabilization technique using either the ad-
vective or divergence form of the partial differential equations to discretize.

The aforementioned implementation is described in detail through this chapter.
Section 6.2 presents the dislocation transport equations extended from a single slip
system in one dimension towards the two-dimensional multiple slip systems case. The
effect of the mechanics on the dislocation transport problem is elucidated at the end
of this section. Subsequently, Section 6.3 explains the way in which the dislocation
transport effect is taken into account in the mechanical problem, which is discretized
using a standard finite element scheme. The interaction between the mechanical and
transport problems is thereby complete and Section 6.4 describes in full detail its al-
gorithmic implementation. Section 6.5 presents a case study to assess the effectiveness
of the stabilization technique in producing numerically well behaved approximations
free of spurious oscillations. This section also presents the results of such a computa-
tional assessment, and at the same time discusses the advantages and drawbacks of the
presented stabilization technique, with suggestions for future improvements. Finally
Section 6.6 closes the chapter by discussing the main conclusions and outlines future
work.
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6.2 Two-dimensional dislocation transport

First, the extension from one-dimensional single slip system dislocation transport
towards two-dimensional dislocation transport on multiple slip systems is carried out.

Considering a crystalline material having ns active slip systems, the positive and
negative (edge) dislocation densities conservation equations on the k-th glide plane
can be written as

Bρ
pkq
�

Bt
�∇ �Φpkq

� � s
pkq
� , (6.1)

Bρ
pkq
�

Bt
�∇ �Φpkq

� � s
pkq
� , (6.2)

with the corresponding fluxes given by

Φpkq
� �

�
�C

pkq
0 ρ

pkq
� �

nş

k�1

Spklq
�
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plq
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plq
� ∇ρplq� � C

plq
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plq
� ∇ρplq�

	
� splq

�
spkq, (6.3)

Φpkq
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pkq
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nş
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Spklq
�
C
plq
2 ρ

plq
� ∇ρplq� � C

plq
3 ρ

plq
� ∇ρplq�

	
� splq

�
spkq. (6.4)

where spkq is the unit vector parallel to the Burgers vector in the k-th glide plane,
i.e. bpkq � bpkqspkq with bpkq � ||bpkq||2. This unit vector is graphically represented in
Figure 6.1. This convention allows to incorporate different phases, with slip systems
having different Burgers vector lengths. This also applies to the other coefficients, the
definitions of which for each glide system read as

C
pkq
0 �

bpkqτ pkq

Bpkq
, and C

pkq
1 �

Ḡ
�
bpkq

�2

12Bpkq
. (6.5)

After introducing the parameters used to switch in the generic formulation between the
Dogge and Groma models, between constant and variable length scales, including or
excluding crossed interactions within a particular glide plane, the constants appearing
in Equations (6.3-6.4) are given by

C
pkq
2 � pb11 � b12qC

pkq
1 L pkq, and C

pkq
3 � pb11 � b12qC

pkq
1 L pkq. (6.6)

Two additional constants are defined, which will be used further on

C
pkq
4 � b11C

pkq
1 L pkq, and C

pkq
5 � b12C

pkq
1 L pkq. (6.7)

The coupling between different glide systems is taken into account through the Spklq

projection matrix whose form has been proposed in a variety of ways depending on the
modelling assumptions [85]. Taking the identity matrix for this, implies decoupling of
the different slip systems. With these conventions it is possible to define the total and
geometrically necessary dislocations densities by adding and subtracting the positive
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and negative dislocations densities. Their fluxes are given by

Φpkq
ρ �

�
C
pkq
0 κpkq �

nş

k�1

Spklq
�
C
plq
4 ρplq∇ρplq � C

plq
5 κplq∇κplq

	
� splq

�
spkq, (6.8)
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�
C
plq
5 ρplq∇κplq � C

plq
4 κplq∇ρplq

	
� splq

�
spkq. (6.9)

Finally, the resolved stress on the k-th slip system τ pkq appearing in Equation 6.5 is
defined as

τ pkq �mpkq � σ � spkq, (6.10)

with mpkq being the unit vector normal to the glide plane of the k-th slip system. This
vector is also graphically represented in Figure 6.1. The stress tensor σ constitutes
the mechanical influence on the dislocation transport problem, directly acting as a
convective driving force causing positive and negative dislocations to flow in mutually
opposite directions.

τ pkq

τ pkq

Φpkq
� � n̂ � 0Φpkq

� � n̂ � 0

spkq

mpkq

Figure 6.1: Positive and negative dislocations in independent glide planes of the same
slip system, bounded by impenetrable barriers.

6.3 Mechanical equilibrium

Once the dislocations densities on each slip system are determined it is possible to
compute their fluxes. The flux of geometrically necessary dislocations density Φpkq

κ

is of particular interest since it allows to determine the plastic slip rate on each slip
system through the Orowan relation

9γpkqp � bpkqspkq �Φpkq
κ . (6.11)

With the slip rates, a plastic strain rate on each slip system 9εpkqp can be computed
next. Summing all the plastic strain rates of all slip systems, the total plastic strain
rate is given by

9εp �
1
2

nş

k�1

9γpkqp

�
mpkq b spkq � spkq bmpkq

	
. (6.12)
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By considering the deformation process to be quasi-static for small strains, the total
strain can be written as the sum of an elastic and a plastic contribution

ε � εe � εp. (6.13)

Using the linear elastic constitutive relation, the stress is related to the elastic strain
by

σ � Dεe. (6.14)

Substituting Equation (6.13) in (6.14) and using ε � 1{2
�
∇u� p∇uqT

�
� ∇su, the

stress tensor is rewritten as
σ � D p∇su� εpq . (6.15)

For static equilibrium, the governing equilibrium equation given by

∇ � σ � f , (6.16)

with f the body forces. After multiplication by a weighting function vT , integra-
tion over the whole spatial domain, integration by parts of the left hand side, and
reorganization of terms, the classical weighted residual statement results»

Ω

∇vTσ dΩ �

»
Ω

vT f dΩ�

»
Γ

vT t dΓ, (6.17)

where t � σ � n̂ are the tractions applied on the boundary Γ with n̂ its unit normal
vector.

Substitution of Equation (6.15) into Equation (6.17) allows taking into account
the plastic strain, i.e. the effect of dislocation transport, in the weighted residual
statement. After passing the plasticity term to the right hand side the following weak
form is obtained»

Ω

∇vTD∇su dΩ �

»
Ω

vT f dΩ�

»
Γ

vT t dΓ�
»

Ω

∇vTDεp dΩ, (6.18)

where the plastic strain is acting as an internal force caused by an additional internal
strain, similarly to thermal strains induced by temperature changes.

Note that once the displacement field u is determined after taking into account ex-
ternal forces, plastic strain and boundary conditions; the stress field σ can be recovered
by using Equation (6.15).

6.4 Algorithmic coupling of transport and equilib-
rium problems

The previous two sections have addressed the dislocation transport problem and the
mechanical equilibrium problem. The couplings of the two problems are contained in
Equations (6.10) and (6.18) respectively. The present section describes in detail the
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coupling of both problems by showing their integration from an algorithmic perspec-
tive.

Here and in the rest of this chapter, all mechanical actions will be imposed through
prescribed displacements at the boundary denoted by û � upΓq. When displacements
are not explicitly prescribed on some parts of the boundary, they are considered as
traction-free boundaries.

Even though the mechanical equilibrium problem is static, the dislocation transport
problem with which it interacts, Equations (6.1-6.2), is intrinsically transient. There-
fore it will be assumed that all mechanical actions are applied slowly enough to render
inertia forces negligible, i.e. the mechanical problem remains static at every time in-
stance. On the contrary, the time-dependent character of the transport dislocation
equations is fully taken into account. External actions in the mechanical problem will
be introduced through the boundary conditions, i.e. displacements on the boundary,
at the specified time instance t and denoted by ûptq � upΓ, tq. For simplicity, the
displacements on the boundary at any given time ûptq will be given by a predefined
steady state boundary displacement, denoted by ûp8q, multiplied by a scalar time
function fptq, thus

ûptq � fptqûp8q. (6.19)

In addition to the external loading through ûptq, the plastic strain at a given time
instance εptqp has to be resolved and supplied to the mechanical problem. This allows
to determine the displacement field uptq according to Equation (6.18), and compute
the stress field σptq with Equation (6.15). The obtained stress field is then projected
onto each glide system according to Equation (6.10) and passed to the dislocation
transport problem, Equations (6.1-6.2), through the constants defined by Equations
(6.3-6.5). Once the dislocations densities at the next time instance are obtained, they
can be used to evaluate the flux of geometrically necessary dislocations. Using the
Orowan relation, Equation (6.11), together with Equation (6.12) the total plastic slip
rate is obtained and used to compute the total plastic slip at the next time instance
as

εpt�∆tq
p � εptqp �∆t 9εp, (6.20)

This updated plastic slip, together with the new displacements on the boundary
ûpt�∆tq, is used according to Equation (6.18) to update the displacement field. This
incremental process is summarized in Algorithm 1.

6.5 Computational assessment

The main purpose of the present section is to assess the effectiveness of the sta-
bilization technique for systems of coupled convection-diffusion-reaction equations in
two-dimensional configurations for a coupled dislocation transport - mechanical equi-
librium problem. This is done by considering a characteristic problem which best
elucidates the behaviour in a simple manner, even though it does not exploit all the
capabilities of the developed implementation.
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Given:

Boundary displacements at final time: ûp8q � u pΓ, Tf q.

Initial fields on the whole domain: εp0qp � εp pΩ, t � 0q, and ρp0q � ρ pΩ, t � 0q.

Initialize:

Boundary displacements at initial time: ûp0q � fpt � 0qûp8q.

Initial stress fields: σp0q ð
�
ûp0q, ε

p0q
p

�
.

Resolved stress on each glide system: τ pkq ð
�
σp0q

�
.

Time marching:

for n � 0, 1, 2, ..., tTf {∆tu do

Compute:

Dislocation field: ρpn�1q ð
�
ρpnq, τ pkq

�
.

Plastic slip rate: 9εp ð
�
ρpn�1q

�
.

Plastic strain: εpn�1q
p � ε

pnq
p �∆t 9εp.

Stress field: σpn�1q ð
�
ûpn�1q, ε

pn�1q
p

�
.

Resolved stress on each glide system: τ pkq ð
�
σpn�1q

�
.

end for

Algorithm 1: Algorithmic implementation of the interaction between the mechanical
equilibrium and dislocation transport problems.
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6.5.1 Problem description

A simple shear problem, applied to a unit square geometry, is analysed using fully
kinematic boundary conditions. The prescribed displacements of the bottom and top
edges in the steady state are: on the bottom edge ûp8q p0 ¤ x ¤ 1, y � 0q � r0, 0sT and
on the top edge ûp8q p0 ¤ x ¤ 1, y � 1q � rd, 0sT . On the left and right edges periodic
boundary conditions are imposed for all time instances, i.e. ûptq px � 1, 0 ¤ y ¤ 1q �
ûptq px � 0, 0 ¤ y ¤ 1q. Note that the prescribed displacements only depend on the
parameter d. A graphical representation is show in Figure 6.2.

x

y

ûp8q p0 ¤ x ¤ 1, y � 0q � r0, 0sT

ûp8q p0 ¤ x ¤ 1, y � 1q � rd, 0sT

ûptq px � 0, 0 ¤ y ¤ 1q �
ûptq px � 1, 0 ¤ y ¤ 1q

Figure 6.2: Kinematic boundary conditions.

Departing from the undeformed configuration, the steady state boundary displace-
ments ûp8q are reached through constant increments until half of the final simulation
time Tf is attained. After this stage ûp8q is kept constant, allowing the dislocation
transport problem to reach a steady state condition once relaxation of the mechani-
cal problem is achieved. The time function multiplying the mechanical steady state
boundary conditions, used in Equation (6.19), therefore reads

fptq �

#
2
Tf
t, 0   t  

Tf

2

1, Tf

2 ¤ t   Tf .
(6.21)

Although the developed implementation is able to handle multiple slip systems, the
presented test is performed activating only a single slip system. The slip system is
aligned vertically, i.e. its Burgers vector is parallel to the y-axis. Neither annihilation
nor nucleation is considered, i.e. spkq� � s

pkq
� � 0 in Equations (6.1-6.2), but uniformly

distributed dislocation densities are assumed as the initial conditions. Dislocations
are not allowed to flow out the spatial domain, i.e. Φpkq

� � n̂ � 0 on the whole domain
boundary.

Numerical stabilization for multidimensional coupled convection-diffusion-reaction equations.

Applications to continuum dislocation transport.



112 Section 6.5. Computational assessment

The material properties are identical to those used in previous chapters and are
comparable to those used in [85, 86]. The domain considered has unit edge length L �
1 µm, and a single phase has been used in the computational domain. Its properties
are: h � 0.1 µm, b � 0.3 nm, B � 10�4 Pa s, ν � 1{3, G � 25 GPa. The initial
condition was chosen as ρp0q� � 200 µm�2.

The Groma model, with variable length scale and not taking into account inter-
action among dislocations of different signs has been used as in [85, 86] to enable a
comparative analysis. Taking d � 0.01 µm, the results presented here are comparable
to those presented in [85, 86] with the maximum applied shear strain.

For compactness, only results on a single mesh are presented and discussed, although
its is important to remark that many simulations with different discretizations, have
been carried out to support the conclusions. Because the same space restrictions, clas-
sical and stabilized results are only compared for the case of dislocation densities, such
comparison provides enough numerical evidence of the necessity of the stabilization
technique to approach the problem at hand using a moderately refined discretization.

6.5.2 Results

The results presented are obtained using a uniform mesh with nx � ny � 32 quadri-
lateral elements in each direction. A bilinear element, using Lagrange polynomials as
interpolation functions, is thereby adopted. The final time has been set as Tf � 103µs
using a time step ∆t � 10�1µs with a fully implicit time integration scheme.

Figure 6.3 illustrates the discretization used in the deformed configuration (with a
magnification factor of 10). A pronounced distortion close to the top and bottom edges
can be observed, differing notoriously from the distortion in the rest of the spatial
domain. This heterogeneity of the strain field is consistent with well know results
already presented in the literature [85, 86]. Such heterogeneity will be elucidated
more clearly after observing the plots depicting the shear stress. These plots are
shown in Figure 6.4. On the left, the shear stress field onto the active glide system
in the entire spatial domain at the last time instance is presented, while on the right
its cross-section on the central vertical line (x � 1{2, 0 ¤ y ¤ 1) is depicted at ten
equally spaced time instances in order to illustrate its time evolution.

The shear stress is not uniform on the whole spatial domain, as would be the case
if only the mechanical boundary conditions are taken into account. This variability is
caused by the effect of the dislocation transport problem on the mechanical equilibrium
problem. The non-uniform spatial distribution of the shear stress and the mechanical
distortion, both occur precisely in the regions where the dislocation densities form
boundary layers. This is confirmed in Figure 6.5, depicting the positive and negative
dislocation densities in the entire spatial domain at the last time instance (left), to-
gether with their time evolution on the middle vertical line (right). It is important
to remark that Figure 6.5 shows that all the numerical approximations of the dislo-
cation densities are strictly positive and free of any spurious oscillation when using
the stabilization technique and whose results are depicted at the top row. This is no
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Figure 6.3: Final deformation at the last time instance amplified ten times.

longer true when the stabilization technique is not used. The plots displayed at the
bottom row corresponds to the numerical approximation of the dislocation densities
for the same problem but without the use of the stabilization technique. The spurious
oscillations and non-negative values of the dislocations densities make these approx-
imations useless. Therefore, the ability of the stabilization technique to render well
behaved numerical approximations is thereby confirmed. Moreover, this example also
confirms the necessity of the stabilization technique in order to handle this problem
with a computationally affordable discretization.

Finally, Figure 6.6 shows the plastic slip γp, for the last time instance on the whole
spatial domain (left) and its time evolution on the central vertical line (right). Note
that the plastic slip γp at the bottom and top edges (y � 0, and y � 1) do not vanish
completely as theoretically assumed through the no-flux boundary conditions in the
dislocation transport problem. This quantity is obtained through the accumulation
of the plastic slip rate 9γp which results from Equation (6.11) using the flux of geo-
metrically necessary dislocation density. This flux, as all the dislocation fluxes, are
supposed to vanish at the boundary, but this is only rigorously true in the strong
form of the partial differential equation prior to its numerical discretization. The
depicted dislocation flux is obtained in a post-processing stage from the dislocation
densities approximated at the nodes composing the finite element discretization. This
post-processing computation involves the spatial derivatives of the degrees-of-freedom.
The evaluation of these derivatives, and therefore of the dislocation fluxes, implies the
loss of one order of accuracy in their numerical approximation. This effect is reflected
in the fact that fluxes, especially on the boundary, cannot be exactly recovered after
discretization via the weak form. Since this is the case for all of the plastic slip rates
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(a) Whole domain, final time. (b) Time evolution, middle vertical line.

Figure 6.4: Spatial distribution of the shear stress. On the whole spatial domain at
final time on the left. On the right the darkest line corresponds to the earliest time
instance while the brightest line to the last time instance.

(a) Whole domain, final time. Stabilized. (b) Evolution, middle vertical line. Stabilized.

(c) Whole domain, final time. Classical. (d) Evolution, middle vertical line. Classical.

Figure 6.5: Spatial distribution of the dislocations densities. On the whole spatial
domain at final time on the left. On the right the darkest line corresponds to the
earliest time instance while the brightest line to the last time instance. Stabilized
results are displayed at the top row and classical at the bottom row.
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(a) Whole domain, final time. (b) Time evolution, middle vertical line.

Figure 6.6: Spatial distribution of the plastic slip. On the whole spatial domain at
final time on the left. On the right the darkest line corresponds to the earliest time
instance while the brightest line to the last time instance.

9γp computed for each time instance, this deviation from zero is accumulated in the
total plastic slip γp. It has been confirmed (based on numerical simulations not shown
here) that this approximation error can be reduced through mesh refinement, even
though the reduction appears to be only linear.

6.6 Conclusions and outlook

In this chapter a two-dimensional crystal plasticity model based on dislocation trans-
port involving multiple slip systems has been outlined. The transport model is made
generic through the use of switching parameters allowing to encompass the vast ma-
jority of models already presented in the literature [21, 31, 85, 86].

The continuum dislocation transport model has been coupled with the mechani-
cal equilibrium problem assuming quasi-static conditions following a well established
framework [28]. The coupling of these two problems has been explained in detail in
this chapter.

The dislocation transport problem requires the solution of systems of coupled convec-
tion-diffusion differential equations even when working with a single slip system. When
additional slip systems are considered, each contributes with two additional transport
equations which are coupled through interaction terms. Using a particular form of
the projection matrix, the coupling between different slip systems can be changed of
fine-tuned.

These two different types of coupling make the stabilization technique for coupled
convection-diffusion-reaction equations appealing, since traditional stabilization tech-
niques can not cope with this challenging problem, not to mention the computationally
unaffordable mesh refining strategy.
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The previously developed stabilization technique is proven to effectively render
strictly positive, smooth and free of spurious oscillations numerical approximations
of the dislocation densities when applied to the strain-gradient crystal plasticity prob-
lem when activating several slip systems. Even more, it is able to properly capture
the boundary layers caused by the convection dominated character of the transport
equations at hand. This approximation is carried out using a computationally af-
fordable discretization. Although not shown in this chapter, numerical assessments
performed using different discretizations allow to claim that the drawback of having
non-vanishing normal fluxes across the domain boundaries can be reduced by refining
the discretization. Note however that the use of equal-order approximation schemes
could be advantageous in order to cope with this numerical error.

Although the test presented here does not exploit the full potential of the developed
multiple slip strain-gradient crystal plasticity implementation, it is important to re-
mark that the computational code fulfils the main objective of this work. It is capable
to treat multiple slip systems with distinct properties, it incorporates various mod-
elling options allowing to select either the Dogge or the Groma model with constant
or variable length scale respectively, and it allows taking into account or neglecting
interactions between dislocations of different signs.

Comparison of the results obtained by altering the model parameters is now easy
and affordable due to the flexibility, versatility and robustness of the computational
implementation of stabilized multiple slip strain-gradient crystal plasticity. This as-
sessment, comparison and analysis is however beyond the scope of this work and will
be future work.
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Chapter 7

Conclusions and Outlook

This thesis deals with the numerical stabilization of convection-diffusion-reaction
equations. Of particular interest are the convection dominated equations arising in
continuum dislocation transport, which in turn allow the description of the plastic be-
haviour of crystalline materials. The objectives pursued in this work, as introduced in
Chapter 1, have been fulfilled in a stepwise manner. A robust and general, but at the
same time versatile and flexible, stabilization technique for multi-dimensional systems
of coupled convection-diffusion-reaction equations has been developed, analysed and
extensively tested through several numerical assessments. Its application to the con-
vection dominated continuum dislocation transport equations has also been exposed
in this thesis. It has been shown to be effective in providing smooth and well behaved
numerical approximations without incurring extraordinary computational resources.

7.1 Results discussion

This section highlights the main results obtained during the development of this
thesis chapter by chapter.

� Chapter 2. After presenting the development of a perturbation-based stabi-
lization technique for the single one-dimensional convection-diffusion-reaction
equation, a rigorous proof of its effectiveness in rendering unconditionally sta-
ble numerical approximations with respect to the space discretization has been
provided for the convection-diffusion case, via the fulfilment of the discrete max-
imum principle. It was also demonstrated and confirmed by numerical assess-
ments that the stabilized solution is consistent with the discretized partial dif-
ferential equation, since it converges to the classical Bubnov-Galerkin solution
if the mesh Péclet number is sufficiently small. The corresponding proofs for
the diffusion-reaction and the general convection-diffusion-reaction cases can be
obtained in a similar manner. Furthermore, it has been demonstrated that the
stabilization technique is applicable irrespective of whether the advective or the
divergence form is used for the spatial discretization, making it highly flexible
and general.

� Chapter 3. In this chapter the stabilization technique has been extended to the
case of a system of coupled differential equations. It was furthermore numerically
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demonstrated through a detailed computational assessment that the extension to
the case of systems of equations effectively inherits the desirable features of the
stabilization technique for the single equation case. The most remarkable ones
are its ability to stabilize both the divergence or advective form of the differential
equation, and its element-wise operation, that allows accommodating spatially
heterogeneous transport coefficients.

� Chapter 4. The favourable effect and consistency of the stabilization technique
when dealing with the non-linear and coupled continuum dislocation transport
system of equations in the transient regime has been extensively illustrated.
Additionally its versatility and flexibility has been made evident by elaborat-
ing and computationally assessing it using different modelling assumptions and
length scales.

� Chapter 5. Here the stabilization technique has been further extended to
multi-dimensional domains and three numerical examples have been success-
fully stabilized. While presenting and discussing these results, the behaviour of
the extended stabilization technique was analysed and it was confirmed that,
as in the one-dimensional case, apart of successfully yielding smooth numerical
approximations which are free of spurious oscillations, it is consistent as well.

� Chapter 6. In this chapter the modelling of plasticity in crystalline materials
considering potentially multiple slip systems has been illustrated. The stabilized
continuum dislocation transport problem has been coupled to the mechanical
equilibrium problem. The non-linearity, the strongly coupled character and the
special boundary conditions used for the continuum dislocation transport equa-
tions are the most prominent difficulties which most traditional stabilization
techniques are unable to deal with. The proposed stabilization scheme has been
successfully applied to these equations using a simplified single slip system config-
uration. Its effectiveness in stabilizing the classical Bubnov-Galerkin scheme has
been demonstrated in the numerical simulation performed. These results allow
envisioning the use of the developed technique for simulating two-dimensional
multi-slip crystal plasticity problems with an affordable computational effort,
while keeping the ability to render accurate and physically meaningful numeri-
cal approximations.

7.2 Further developments

Although the main objectives of this thesis have been successfully fulfilled, some is-
sues remain unresolved and some others arose while carrying out this research project.
They can be separated into two categories. The first one concerns numerically re-
lated issues, while the second category encompasses aspects related to the plasticity
modelling of crystalline materials. They are listed in two separate sections in what
follows.

7.2.1 Numerical methods

� Unstructured meshes. In the numerical assessments presented here for two-
dimensional problems, only structured meshes with square finite elements and
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linear Lagrange polynomials interpolation functions have been used. The use
of unstructured meshes and other types of finite elements, possibly with higher
order interpolation functions, could also be explored.

� Alternative discretization schemes. Notwithstanding the fact that the
present stabilization technique has been developed and applied only within the
finite element context, its generality allows to claim it could be successfully used
in the context of the finite difference, finite volume or spectral methods. Testing
its effectiveness for such numerical schemes represents an interesting challenge.

� High performance computing. During this work, little attention has been
paid to implementing the algorithms used in the numerical assessments with
the most cutting edge tools of scientific computing. The use of more sophisti-
cated and efficient methods for the solution of non-linear systems of algebraic
equations, more accurate and efficient time integration schemes and the use of
preconditioning techniques could be pursued in order to speed up the computa-
tions.

� Numerical analysis. Although the ability of the presented stabilization tech-
nique to render smooth and well behaved numerical approximations has been
explicitly demonstrated via the fulfilment of the discrete maximum principle, a
more detailed numerical analysis could provide valuable information about its
effectiveness from the mathematical point of view. It could also provide useful
insight for further improvement. Of particular interest is the effect the stabi-
lization has on the spectral properties of the linear system generated by the
discretization process. Understanding how the eigenvalues of the discretized dif-
ferential operator are modified by the stabilization technique will provide useful
insight from an operational perspective.

7.2.2 Crystal plasticity

� Nucleation and annihilation. All continuum dislocation transport problems
addressed in this work lacked nucleation and annihilation of dislocations. It is
expected that taking into account these phenomena does not pose any additional
difficulty from the numerical stability perspective. Thus the incorporation of
these mechanisms could be included in further developments.

� Multi-slip systems. Although the theory for handling multiple slip systems has
been developed in this manuscript and the corresponding code is implemented
and ready for use, its thorough evaluation is still pending and should be pursued
soon.

� Boundary conditions. The boundary condition of no flux of dislocations
through the boundaries has precisely in part motivated the development of a
stabilization technique able to work with either the divergence or advective form
of the discretized partial differential equation. Nevertheless, no other type of
boundary condition has been considered for the dislocation transport problem
during this research project. Even though the treatment of Dirichlet and periodic
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boundary conditions should not represent any serious difficulty from the numer-
ical stability perspective, their implementation and testing are also intended as
a further development.

� Multi-grain structures. All continuum dislocation transport problems elabo-
rated in this work consider the idealized situation when a single crystal is taken
into account. In order to handle more realistic problems with higher scientific in-
terest the simulation and study of multi-grains configurations will be addressed.

� Multi-phase materials. For simplicity in the assessment of the stabilization
technique, only single phase materials have been considered in the numerical
simulations presented. The use of multi-phase materials is supposed to not affect
the numerical stability because of the element-wise operation of the stabilization
technique.
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