30,352 research outputs found

    Stability of Multi-Dimensional Switched Systems with an Application to Open Multi-Agent Systems

    Full text link
    Extended from the classic switched system, themulti-dimensional switched system (MDSS) allows for subsystems(switching modes) with different state dimensions. In this work,we study the stability problem of the MDSS, whose state transi-tion at each switching instant is characterized by the dimensionvariation and the state jump, without extra constraint imposed.Based on the proposed transition-dependent average dwell time(TDADT) and the piecewise TDADT methods, along with the pro-posed parametric multiple Lyapunov functions (MLFs), sufficientconditions for the practical and the asymptotical stabilities of theMDSS are respectively derived for the MDSS in the presenceof unstable subsystems. The stability results for the MDSS areapplied to the consensus problem of the open multi-agent system(MAS) which exhibits dynamic circulation behaviors. It is shownthat the (practical) consensus of the open MAS with disconnectedswitching topologies can be ensured by (practically) stabilizingthe corresponding MDSS with unstable switching modes via theproposed TDADT and parametric MLF methods.Comment: 12 pages, 9 figure

    Distributed Consensus of Linear Multi-Agent Systems with Switching Directed Topologies

    Full text link
    This paper addresses the distributed consensus problem for a linear multi-agent system with switching directed communication topologies. By appropriately introducing a linear transformation, the consensus problem is equivalently converted to a stabilization problem for a class of switched linear systems. Some sufficient consensus conditions are then derived by using tools from the matrix theory and stability analysis of switched systems. It is proved that consensus in such a multi-agent system can be ensured if each agent is stabilizable and each possible directed topology contains a directed spanning tree. Finally, a numerical simulation is given for illustration.Comment: The paper will be presented at the 2014 Australian Control Conference (AUCC 2014), Canberra, Australi

    Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments

    Full text link
    In the NIPS 2017 Learning to Run challenge, participants were tasked with building a controller for a musculoskeletal model to make it run as fast as possible through an obstacle course. Top participants were invited to describe their algorithms. In this work, we present eight solutions that used deep reinforcement learning approaches, based on algorithms such as Deep Deterministic Policy Gradient, Proximal Policy Optimization, and Trust Region Policy Optimization. Many solutions use similar relaxations and heuristics, such as reward shaping, frame skipping, discretization of the action space, symmetry, and policy blending. However, each of the eight teams implemented different modifications of the known algorithms.Comment: 27 pages, 17 figure

    Decentralized formation control with connectivity maintenance and collision avoidance under limited and intermittent sensing

    Full text link
    A decentralized switched controller is developed for dynamic agents to perform global formation configuration convergence while maintaining network connectivity and avoiding collision within agents and between stationary obstacles, using only local feedback under limited and intermittent sensing. Due to the intermittent sensing, constant position feedback may not be available for agents all the time. Intermittent sensing can also lead to a disconnected network or collisions between agents. Using a navigation function framework, a decentralized switched controller is developed to navigate the agents to the desired positions while ensuring network maintenance and collision avoidance.Comment: 8 pages, 2 figures, submitted to ACC 201
    corecore