78,032 research outputs found

    The structure and stability of persistence modules

    Full text link
    We give a self-contained treatment of the theory of persistence modules indexed over the real line. We give new proofs of the standard results. Persistence diagrams are constructed using measure theory. Linear algebra lemmas are simplified using a new notation for calculations on quiver representations. We show that the stringent finiteness conditions required by traditional methods are not necessary to prove the existence and stability of the persistence diagram. We introduce weaker hypotheses for taming persistence modules, which are met in practice and are strong enough for the theory still to work. The constructions and proofs enabled by our framework are, we claim, cleaner and simpler.Comment: New version. We discuss in greater depth the interpolation lemma for persistence module

    Parametrized Homology via Zigzag Persistence

    Get PDF
    This paper develops the idea of homology for 1-parameter families of topological spaces. We express parametrized homology as a collection of real intervals with each corresponding to a homological feature supported over that interval or, equivalently, as a persistence diagram. By defining persistence in terms of finite rectangle measures, we classify barcode intervals into four classes. Each of these conveys how the homological features perish at both ends of the interval over which they are defined

    Local Equivalence and Intrinsic Metrics between Reeb Graphs

    Get PDF
    As graphical summaries for topological spaces and maps, Reeb graphs are common objects in the computer graphics or topological data analysis literature. Defining good metrics between these objects has become an important question for applications, where it matters to quantify the extent by which two given Reeb graphs differ. Recent contributions emphasize this aspect, proposing novel distances such as {\em functional distortion} or {\em interleaving} that are provably more discriminative than the so-called {\em bottleneck distance}, being true metrics whereas the latter is only a pseudo-metric. Their main drawback compared to the bottleneck distance is to be comparatively hard (if at all possible) to evaluate. Here we take the opposite view on the problem and show that the bottleneck distance is in fact good enough {\em locally}, in the sense that it is able to discriminate a Reeb graph from any other Reeb graph in a small enough neighborhood, as efficiently as the other metrics do. This suggests considering the {\em intrinsic metrics} induced by these distances, which turn out to be all {\em globally} equivalent. This novel viewpoint on the study of Reeb graphs has a potential impact on applications, where one may not only be interested in discriminating between data but also in interpolating between them

    Quantifying Transversality by Measuring the Robustness of Intersections

    Full text link
    By definition, transverse intersections are stable under infinitesimal perturbations. Using persistent homology, we extend this notion to a measure. Given a space of perturbations, we assign to each homology class of the intersection its robustness, the magnitude of a perturbations in this space necessary to kill it, and prove that robustness is stable. Among the applications of this result is a stable notion of robustness for fixed points of continuous mappings and a statement of stability for contours of smooth mappings

    The persistence landscape and some of its properties

    Full text link
    Persistence landscapes map persistence diagrams into a function space, which may often be taken to be a Banach space or even a Hilbert space. In the latter case, it is a feature map and there is an associated kernel. The main advantage of this summary is that it allows one to apply tools from statistics and machine learning. Furthermore, the mapping from persistence diagrams to persistence landscapes is stable and invertible. We introduce a weighted version of the persistence landscape and define a one-parameter family of Poisson-weighted persistence landscape kernels that may be useful for learning. We also demonstrate some additional properties of the persistence landscape. First, the persistence landscape may be viewed as a tropical rational function. Second, in many cases it is possible to exactly reconstruct all of the component persistence diagrams from an average persistence landscape. It follows that the persistence landscape kernel is characteristic for certain generic empirical measures. Finally, the persistence landscape distance may be arbitrarily small compared to the interleaving distance.Comment: 18 pages, to appear in the Proceedings of the 2018 Abel Symposiu
    corecore