4 research outputs found

    NetCamo: camouflaging network traffic for QoS-guaranteed mission critical applications

    Full text link

    Routage adaptatif et stabilité dans les réseaux maillés sans fil

    Full text link
    Grâce à leur flexibilité et à leur facilité d’installation, les réseaux maillés sans fil (WMNs) permettent un déploiement d’une infrastructure à faible coût. Ces réseaux étendent la couverture des réseaux filaires permettant, ainsi, une connexion n’importe quand et n’importe où. Toutefois, leur performance est dégradée par les interférences et la congestion. Ces derniers causent des pertes de paquets et une augmentation du délai de transmission d’une façon drastique. Dans cette thèse, nous nous intéressons au routage adaptatif et à la stabilité dans ce type de réseaux. Dans une première partie de la thèse, nous nous intéressons à la conception d’une métrique de routage et à la sélection des passerelles permettant d’améliorer la performance des WMNs. Dans ce contexte nous proposons un protocole de routage à la source basé sur une nouvelle métrique. Cette métrique permet non seulement de capturer certaines caractéristiques des liens tels que les interférences inter-flux et intra-flux, le taux de perte des paquets mais également la surcharge des passerelles. Les résultats numériques montrent que la performance de cette métrique est meilleure que celle des solutions proposées dans la littérature. Dans une deuxième partie de la thèse, nous nous intéressons à certaines zones critiques dans les WMNs. Ces zones se trouvent autour des passerelles qui connaissent une concentration plus élevé du trafic ; elles risquent de provoquer des interférences et des congestions. À cet égard, nous proposons un protocole de routage proactif et adaptatif basé sur l’apprentissage par renforcement et qui pénalise les liens de mauvaise qualité lorsqu’on s’approche des passerelles. Un chemin dont la qualité des liens autour d’une passerelle est meilleure sera plus favorisé que les autres chemins de moindre qualité. Nous utilisons l’algorithme de Q-learning pour mettre à jour dynamiquement les coûts des chemins, sélectionner les prochains nœuds pour faire suivre les paquets vers les passerelles choisies et explorer d’autres nœuds voisins. Les résultats numériques montrent que notre protocole distribué, présente de meilleurs résultats comparativement aux protocoles présentés dans la littérature. Dans une troisième partie de cette thèse, nous nous intéressons aux problèmes d’instabilité des réseaux maillés sans fil. En effet, l’instabilité se produit à cause des changements fréquents des routes qui sont causés par les variations instantanées des qualités des liens dues à la présence des interférences et de la congestion. Ainsi, après une analyse de l’instabilité, nous proposons d’utiliser le nombre de variations des chemins dans une table de routage comme indicateur de perturbation des réseaux et nous utilisons la fonction d’entropie, connue dans les mesures de l’incertitude et du désordre des systèmes, pour sélectionner les routes stables. Les résultats numériques montrent de meilleures performances de notre protocole en comparaison avec d’autres protocoles dans la littérature en termes de débit, délai, taux de perte des paquets et l’indice de Gini.Thanks to their flexibility and their simplicity of installation, Wireless Mesh Networks (WMNs) allow a low cost deployment of network infrastructure. They can be used to extend wired networks coverage allowing connectivity anytime and anywhere. However, WMNs may suffer from drastic performance degradation (e.g., increased packet loss ratio and delay) because of interferences and congestion. In this thesis, we are interested in adaptive routing and stability in WMNs. In the first part of the thesis, we focus on defining new routing metric and gateway selection scheme to improve WMNs performance. In this context, we propose a source routing protocol based on a new metric which takes into account packet losses, intra-flow interferences, inter-flow interferences and load at gateways together to select best paths to best gateways. Simulation results show that the proposed metric improves the network performance and outperforms existing metrics in the literature. In the second part of the thesis, we focus on critical zones, in WMNs, that consist of mesh routers which are located in neighborhoods of gateways where traffic concentration may occur. This traffic concentration may increase congestion and interferences excessively on wireless channels around the gateways. Thus, we propose a proactive and adaptive routing protocol based on reinforcement learning which increasingly penalizes links with bad quality as we get closer to gateways. We use Q-learning algorithm to dynamically update path costs and to select the next hop each time a packet is forwarded toward a given gateway; learning agents in each mesh router learn the best link to forward an incoming packet and explore new alternatives in the future. Simulation results show that our distributed routing protocol is less sensitive to interferences and outperforms existing protocols in the literature. In the third part of this thesis, we focus on the problems of instability in WMNs. Instability occurs when routes flapping are frequent. Routes flapping are caused by the variations of link quality due to interferences and congestion. Thus, after analyzing factors that may cause network instability, we propose to use the number of path variations in routing tables as an indicator of network instability. Also, we use entropy function, usually used to measure uncertainty and disorder in systems, to define node stability, and thus, select the most stable routes in the WMNs. Simulation results show that our stability-based routing protocol outperforms existing routing protocols in the literature in terms of throughput, delay, loss rate, and Gini index

    Utilization-based delay guarantee techniques and their applications

    Get PDF
    Many real-time systems demand effective and efficient delay-guaranteed services to meet timing requirements of their applications. We note that a system provides a delay-guaranteed service if the system can ensure that each task will meet its predefined end-to-end deadline. Admission control plays a critical role in providing delayguaranteed services. The major function of admission control is to determine admissibility of a new task. A new task will be admitted into the system if the deadline of all existing tasks and the new task can be met. Admission control has to be efficient and efficient, meaning that a decision should be made quickly while admitting the maximum number of tasks. In this dissertation, we study a utilization-based admission control mechanism. Utilization-based admission control makes an admission decision based on a simple resource utilization test: A task will be admitted if the resource utilization is lower than a pre-derived safe resource utilization bound. The challenge of obtaining a safe resource utilization bound is how to perform delay analysis offline, which is the main focus of this dissertation. For this, we develop utilization-based delay guarantee techniques to render utilization-based admission control both efficient and effective, which is further confirmed with our data. We develop techniques for several systems that are of practical importance. We first consider wired networks with the Differentiated Services model, which is wellknown as its supporting scalable services in computer networks. We consider both cases of providing deterministic and statistical delay-guaranteed services in wired networks with the Differentiated Services model. We will then extend our work to wireless networks, which have become popular for both civilian and mission critical applications. The variable service capacity of a wireless link presents more of a challenge in providing delay-guaranteed services in wireless networks. Finally, we study ways to provide delayguaranteed services in component-based systems, which now serve as an important platform for developing a new generation of computer software. We show that with our utilization-based delay guarantee technique, component-based systems can provide efficient and effective delay-guaranteed services while maintaining such advantages as the reusability of components

    Stability in ATM Networks

    No full text
    In this paper, we address the issues of stability in ATM networks. A network is stable if and only if all the packets have a bounded delay. We first consider ATM networks with FCFS scheduling policy. We then study networks with priority driven scheduling policy. For each network, we develop criteria for testing the stability of an ATM network and methods of deriving delay bounds in a stable network. In previous work, the Cruz-Gallager-Parekh ring has been a "benchmark" architecture to study the stability problem. For example, Gallager and Parekh claimed that the ring with size no more than four switches is stable when the total utilization of the links is less than 100% [10]. We validated this result. Furthermore, we find that a ring with large number of switches is stable if the total utilization of the links is less than or equal to 73%. 1 Introduction In this paper, we address the issue of stability in communication networks. A network is said to be stable if all the data packets..
    corecore