4 research outputs found

    Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits

    Get PDF
    Nervous systems are information processing networks that evolved by natural selection, whereas very large scale integrated (VLSI) computer circuits have evolved by commercially driven technology development. Here we follow historic intuition that all physical information processing systems will share key organizational properties, such as modularity, that generally confer adaptivity of function. It has long been observed that modular VLSI circuits demonstrate an isometric scaling relationship between the number of processing elements and the number of connections, known as Rent's rule, which is related to the dimensionality of the circuit's interconnect topology and its logical capacity. We show that human brain structural networks, and the nervous system of the nematode C. elegans, also obey Rent's rule, and exhibit some degree of hierarchical modularity. We further show that the estimated Rent exponent of human brain networks, derived from MRI data, can explain the allometric scaling relations between gray and white matter volumes across a wide range of mammalian species, again suggesting that these principles of nervous system design are highly conserved. For each of these fractal modular networks, the dimensionality of the interconnect topology was greater than the 2 or 3 Euclidean dimensions of the space in which it was embedded. This relatively high complexity entailed extra cost in physical wiring: although all networks were economically or cost-efficiently wired they did not strictly minimize wiring costs. Artificial and biological information processing systems both may evolve to optimize a trade-off between physical cost and topological complexity, resulting in the emergence of homologous principles of economical, fractal and modular design across many different kinds of nervous and computational networks

    Inference of direct and multistep effective connectivities from functional connectivity of the brain and of relationships to cortical geometry

    Get PDF
    Background The problem of inferring effective brain connectivity from functional connectivity is under active investigation, and connectivity via multistep paths is poorly understood. New method A method is presented to calculate the direct effective connection matrix (deCM), which embodies direct connection strengths between brain regions, from functional CMs (fCMs) by minimizing the difference between an experimental fCM and one calculated via neural field theory from an ansatz deCM based on an experimental anatomical CM. Results The best match between fCMs occurs close to a critical point, consistent with independent published stability estimates. Residual mismatch between fCMs is identified to be largely due to interhemispheric connections that are poorly estimated in an initial ansatz deCM due to experimental limitations; improved ansatzes substantially reduce the mismatch and enable interhemispheric connections to be estimated. Various levels of significant multistep connections are then imaged via the neural field theory (NFT) result that these correspond to powers of the deCM; these are shown to be predictable from geometric distances between regions. Comparison with existing methods This method gives insight into direct and multistep effective connectivity from fCMs and relating to physiology and brain geometry. This contrasts with other methods, which progressively adjust connections without an overarching physiologically based framework to deal with multistep or poorly estimated connections. Conclusions deCMs can be usefully estimated using this method and the results enable multistep connections to be investigated systematically
    corecore