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Highlights 
 

• Neural Field Theory (NFT) can yield effective connectivity from functional 
connectivity.  

• Effective and functional connectivity are related to cortical geometry. 
• Norm-minimization is a useful method to infer effective connectivity.  
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Abstract

Background : The problem of inferring effective brain connectivity from func-

tional connectivity is under active investigation, and connectivity via multistep

paths is poorly understood.

New method : A method is presented to calculate the direct effective connec-

tion matrix (deCM), which embodies direct connection strengths between brain

regions, from functional CMs (fCMs) by minimizing the difference between an

experimental fCM and one calculated via neural field theory from an ansatz

deCM based on an experimental anatomical CM.

Results : The best match between fCMs occurs close to a critical point, con-

sistent with independent published stability estimates. Residual mismatch be-

tween fCMs is identified to be largely due to interhemispheric connections that

are poorly estimated in an initial ansatz deCM due to experimental limita-

tions; improved ansatzes substantially reduce the mismatch and enable inter-
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hemispheric connections to be estimated. Various levels of significant multistep

connections are then imaged via the neural field theory (NFT) result that these

correspond to powers of the deCM; these are shown to be predictable from ge-

ometric distances between regions.

Comparison with existing methods : This method gives insight into direct and

multistep effective connectivity from fCMs and relating to physiology and brain

geometry. This contrasts with other methods, which progressively adjust con-

nections without an overarching physiologically based framework to deal with

multistep or poorly estimated connections.

Conclusions : deCMs can be usefully estimated using this method and the re-

sults enable multistep connections to be investigated systematically.

Keywords: Functional connectivity, Effective connectivity, Anatomical

connectivity, Neural field theory, Cortical geometry, Multistep connections,

Norm-minimization, Global mode removal.

1. Introduction

The need to understand how the brain perform tasks rapidly, processes in-

puts, develops, responds to damage, and changes its connectivity as a result

of lesions, has led to enormous interest in identifying the interrelationships be-

tween function and anatomy of the brain (Friston, 2011; Bullmore and Sporns,5

2009; Rubinov et al., 2009; Sporns et al., 2004, 2000; Kaiser et al., 2010; Honey

et al., 2007; Robinson et al., 2009; Henderson and Robinson, 2011; Sporns, 2010;

Honey et al., 2010; Rubinov et al., 2011; Bassett et al., 2006; Gray and Robin-

son, 2009; Gray et al., 2009; Kitzbichler et al., 2009; Sporns et al., 2005; Beggs

and Plenz, 2003; Stam and de Bruin, 2004; Linkenkaer-Hansen et al., 2001; Al-10

bert and Barabási, 2002; Barthélemy, 2011; Galán, 2008; Honey et al., 2009).

Experiments and analysis on the “resting” (i.e., free of conscious processing and

2



Page 5 of 44

Acc
ep

te
d 

M
an

us
cr

ip
t

experimental tasks) human brain show that the functional connectivity is sup-

ported by anatomical connectivity (Hagmann et al., 2008; Honey et al., 2009;

Deco et al., 2014; Damoiseaux et al., 2006).15

Connectivity between brain regions is often expressed via connection matri-

ces (CMs), where rows and columns of the matrix represent brain regions (Fris-

ton, 2011; Bullmore and Sporns, 2009; Sporns, 2010) and entries represent the

connections between them. Anatomical connection matrices (aCMs, sometimes

termed structural connection matrices in the literature) summarize the known20

anatomical connectivity between pairs of regions of interest (RoIs) in the brain,

regardless of whether they are active; sometimes published aCMs are binary

and sometimes weighted by an approximate estimate of relative fiber density.

In matrix notation RoIs are represented as nodes and the corresponding weights

that connect these RoIs are represented as matrix entries. A symmetric aCM25

can be obtained using diffusion spectrum imaging or diffusion tensor imaging

(DSI or DTI) that estimates weighted strengths of direct fiber links between

brain regions, but does not record the direction of these links or whether they

are active in any particular brain state. Symmetric functional connection ma-

trices (fCMs) are most often determined from the covariance of activity in RoIs30

of the brain using functional magnetic resonance imaging (fMRI) (Friston, 2011;

Bullmore and Sporns, 2009; Sporns, 2010; Aquino et al., 2012).

Several authors have tried to predict functional connectivity from anatom-

ical connectivity and vice versa (Hagmann et al., 2008; Honey et al., 2009;

Pernice et al., 2011; Goñi et al., 2014; Hutchison et al., 2011), but these early35

methods were mostly statistical, without an overarching physiologically based

framework to deal with indirect, missing, and/or inactive connections. More re-

cent estimates of the deCM used dynamic neural field and neural mass models

to fit the fCM of a specific dynamic model to experiment (Gilson et al., 2016;

3
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Deco et al., 2014). In their method, connectivity strengths were progressively40

adjusted until the best match with the resulting numerically calculated fCM

was achieved; this work confirmed that near-criticality is required for a good

match and that interhemispheric connections are underestimated, which is in

accord with our earlier results that showed the brain functions in a near-critical

state (Robinson et al., 1997, 2002; Robinson, 2012; Robinson et al., 2014). The45

CM that embodies the strengths of direct connections between points in a given

brain state is termed a direct effective CM to unambiguously distinguish it from

other types of effective CM (deCM, which has also previously been termed an

effective CM or a gain matrix in the literature). Our recent work (Robinson

et al., 2014) demonstrated how to identify the correctly normalized deCM from50

an experimental fCM via neural field theory (NFT) and eigenfunction analysis

in the symmetric case. This was based on the method of Robinson (2012) to

interrelate total effective CMs (teCMs, which measure all effects via both direct

and indirect paths), deCMs, and fCMs. Meier et al. (2016) used the resulting

power series expansion in further image analysis; however, this expansion has55

yet to be used to systematically investigate multistep (indirect) connections and

their relative importance.

Here we address issues of estimating effective connectivity from the func-

tional connectivity, including both direct and multistep connections, via the

NFT propagator approach (Robinson, 2012). A bare neural field (NF) prop-60

agator represents only effects via direct connections with other regions of the

network, and hence is identified with the deCM. A dressed propagator represents

effects that travel via both direct and indirect connections and is thus identified

with the teCM (Robinson, 2012; Robinson et al., 2014). Firstly, we present a

method to estimate the deCM by minimizing the norm of the difference be-65

tween an experimental fCM and the analytically calculated fCM for the aCM.

4
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Secondly, we use these results to investigate underestimated connections in ex-

perimentally recorded aCMs. Thirdly, we explore the fact that the experimental

fCM has fuller connectivity than the experimental aCM. Since DSI records di-

rect connections only, we explore how various orders of multistep connections70

contribute to the observed activity (and hence the teCM and fCM) over and

above the direct connectivity. This enables us to estimate the strengths of in-

direct connections via different numbers of intermediate RoIs and compare our

result with experiment. Lastly, we present a method to analytically estimate

the effective strengths of multistep connections vs. the number of steps.75

2. Theory

Our work is based on NFT results that relate structure and functional con-

nectivity (Robinson, 2012). In this section we briefly summarize the relevant

aspects of NFT in propagator form, including how it interrelates effective and

functional CMs.80

2.1. Neural Field Theory and Propagator Approach to Connection Matrices

Our physiologically based NFT of brain dynamics incorporates arbitrary

numbers of structures and neural populations (Robinson, 2005, 2012). These

distinct neural populations are spatially distributed in the brain and their ac-

tivity is influenced by neural inputs from various afferent populations.85

The quantity Qa(r, t) represents the spiking rate of a neural population a at

position r at time t in the brain. An important point here is that Qa can be

used to represent either a mean firing rate or a perturbation from that mean. In

the context of fMRI, experimental fCMs are constructed by calculating corre-

lations or covariances of small differences from baseline activity (Friston, 2011;90

Bullmore and Sporns, 2009; Sporns, 2010; Honey et al., 2010). As discussed in

detail elsewhere (Robinson, 2012; Robinson et al., 2014), we thus concentrate on

5
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perturbations from baseline activity and restrict attention to the linear regime,

noting that BOLD signal fluctuations are driven by local neural activity, pri-

marily that of excitatory pyramidal cells (Attwell and Laughlin, 2001; Aquino95

et al., 2012).

Since spikes in population a are elicited by inputs from various afferent

populations, which we label b = 1, . . . , p, we can write

Qa(r, t) =
∑
b

∫ ∫
Λ̃ab(r, t, r

′, t′)Qb(r
′, t′)dr′dt′ +Na(r, t), (1)

where the causal propagator Λ̃ab in Eq. (1) quantifies the effect of afferent activ-

ity in population b on population a, integrates over all sources locations (r′, t′),100

and Na(r, t) is the external input (Robinson, 2012).

Equation (1) allows for temporal dynamics. To obtain the most commonly

measured purely spatial deCM that measures influences of one point on another

without regard to timing, one must integrate Λ̃ab over all possible values of

t and t′ to account for all influences that travel directly to (r, t) from (r′, t′),105

regardless of timing (Robinson et al., 1997; Knock et al., 2009). This yields the

purely spatial propagator,

Λ̃(r, r′) =

∫ ∫
Λ̃(r, t, r′, t′)dtdt′, (2)

which remains implicitly causal. Because Eq. (1) is linear, it is possible to elim-

inate all but one of the Qa from this set of equations and term it Q henceforth.

Then if the brain is discretized into n regions, the quantities in the resulting110

equation can be collectively written in matrix notation as Q, Λ̃, and N, where

Q and N are n-element column matrices, Λ̃ is n× n, and any time dependence

of Λ̃ is ignored henceforth. The equation for Q can then be written in matrix

6
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notation as (Honey et al., 2009)

Q = Λ̃Q + N. (3)

From Eq. (3) one obtains the standard result for the response of a linear115

system to an external stimulus N (Robinson, 2012; Galán, 2008):

Q =
[
I− Λ̃

]−1
N, (4)

= TN, (5)

= (I + Λ)N, (6)

where I is the identity matrix and the superscript −1 denotes the matrix inverse.

Equation (5) defines the transfer matrix T that relates the activity Q to an input

N. The matrix Λ is defined by Eq. (6) and is termed the total effective CM

(teCM), which was referred to as the eCM and identified with the NFT dressed120

propagator by Robinson (2012). The teCM measures the total connectivity

between RoIs via both direct and indirect paths. Expansion of Eq. (4) in a

matrix power series shows that

Λ = Λ̃ + Λ̃2 + Λ̃3 + . . .+ Λ̃m, (7)

where this series converges provided all eigenvalues of Λ̃ are of less than unit

modulus, which is a sufficient condition for the network to be stable and thus125

able to exhibit normal brain activity (Robinson et al., 2014). The terms Λ̃m

correspond to propagation via m − 1 intermediate RoIs, as shown in Fig. 1.

Unlike statistical partial correlation methods (Zalesky et al., 2012), this expla-

nation separates all levels of multistep connections and is based directly on the

7
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physics of the system.130

Λ̃2

Λ̃3

Λ̃

Figure 1: Connections between two RoIs: direct connections (red), connections via one
intermediate RoI (green), and connections via two intermediate RoIs (blue). The box next
to each path contains the corresponding term in the matrix representation of connectivity
between two RoIs via, 0, 1, 2, . . ., intermediate RoIs; i.e., Λ̃, Λ̃2, Λ̃3, . . ., respectively. The
sum of all such terms is the total eCM (teCM, Λ) or dressed propagator.

A quantity often used to define the fCM is the covariance matrix of activity

at spatial locations r and r′ (Friston, 2011; Bullmore and Sporns, 2009; Sporns,

2010; Honey et al., 2010),

C(r, r′) =
〈
Q(r, t)QT (r′, t)

〉
, (8)

where the superscript T denotes the transpose of the matrix and angle brackets

indicate an average over t, or equivalently if the system is ergodic, over real-135

8
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izations of the external inputs. If the inputs are white noise, Eq. (5) yields the

matrix form (Robinson, 2012)

C = TTT . (9)

Since C is symmetric, it contains no information on timing or the direction of

causality between r and r′. Usually, the covariance is normalized by dividing it

by the variance when defining the fCM.140

A further point that must be stressed is that the experimental fCM is often

calculated after removal of the global brain signal to avoid artifacts from heart-

beats, breathing, and head motion, that are common across the brain (Murphy

et al., 2009; He and Liu, 2012). These signals are removed during experimental

data processing. The experimental data discussed here, also removes any global145

neural signals and corresponding BOLD responses. Details of the global brain

signal removal can be found in Hagmann et al. (2008). Hence, throughout the

present work we remove the global spatially uniform mode, which corresponds to

the lowest eigenmode of the theoretical deCM, before computing the covariance

for comparison with the experimental fCM, which corresponds to subtracting150

from C the product of the activities in the global mode at the two points being

correlated.

3. Methods

In this section we briefly introduce the experimental dataset used to illustrate

the method. Based on the form Robinson (2012) NFT analysis mentioned in155

Sec. 2, we then present our method to obtain the deCM by fitting the calculated

fCM to an experimentally recorded fCM, and explain the approach we use to

investigate multistep connections. A number of new analytic results are derived

here. We stress that the methods used in the present work do not require any

9
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simulations of NFT whatsoever.160

3.1. Experimental aCM, fCM, and distance between RoIs

To illustrate our method, throughout this paper we use a published exper-

imental aCM that was obtained using DSI scans of the resting brains of five

healthy right-handed male subjects, aged between 24 and 32 years (Hagmann

et al., 2008). Other experimental datasets are available, but this widely used165

dataset has both aCM and fCM, with a large number of RoIs and it suffices to

test our method. Hagmann et al. (2008) constructed a symmetric square aCM

of size 998 × 998 with real positive entries using fiber tractography. The 998

nodes in the matrix cover the entire cortex, each defining an RoI. Each matrix

entry is an undirected measure of the connection density of the fibers between170

two regions, averaged across the subjects (Hagmann et al., 2008).

In the experiment that produced the data we are using, a “resting state” fCM

of same size was constructed using fMRI imaging of the same subjects (Honey

et al., 2009). These authors computed time series for the same registered 998

ROIs as the aCM, the global component of the signal was removed (Hagmann175

et al., 2008), and covariances of the residual signals were computed to construct

the 998 × 998 fCM (Honey et al., 2009).

The experimental aCM and fCM represent interhemispheric and intrahemi-

spheric connectivity. The top left submatrix of size 500 × 500 represent con-

nections within the right hemisphere and the bottom right submatrix of size180

498 × 498 represents connections within the left hemisphere. The other two

submatrices represent interhemispheric connections.

In the experimental data, 5 RoIs from the right hemisphere and 4 from

the left hemisphere have no connections to any other RoIs. The RoIs that

are not part of the connectivity network thus were deleted from the aCM and185

corresponding fCM. For the analysis in Sec. 3.2.1, individual CMs for the two

10
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hemispheres of the same size are needed. We thus also delete the RoI in the right

hemisphere that has the least connectivity with other RoIs, this step has negli-

gible effect on the connectivity network in the experimental aCM. These steps

give an experimental aCM (aCMexpt) of size 988 × 988 with each hemisphere190

of size 494 × 494, as shown in Fig. 2(a) with the corresponding experimental

fCM (fCMexpt) in Fig. 2(b).

The experimental data include the Cartesian coordinates of the RoIs, from

which we calculate the Euclidean distance between each pair.

3.2. Norm Minimization195

The symmetric aCMexpt from Sec. 3.1 records estimated anatomical connec-

tions between RoIs. However, the activity that underlines the fCM is supported

by all active connections, whether or not their strengths are correctly estimated

in aCMexpt. Our first approximation to calculate the fCM from the aCMexpt

is to assume that the deCM, Λ̃, is linearly proportional to aCMexpt; i.e.,200

Λ̃ = c aCMexpt, (10)

where c is a constant to be determined. In the absence of data on directionality,

it is natural to make this ansatz that the strength of connectivity in the approx-

imated deCM is proportional to the connectivity strengths in the aCMexpt,

which are proportional to the number of axons that connect the pairs of re-

gions. Indeed, this is the most commonly used approximation in predictive205

studies (Knock et al., 2009; Deco et al., 2008; Alstott et al., 2009). However,

we note that there is actually some asymmetry in the anatomical connectivity

and this is neglected in approximation (Gilson et al., 2016; Sporns, 2010). The

approximation in Eq. (10) also fails if significant number of connections are

missed in aCMexpt, and/or if the relative strengths of different connections are210

11
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not well estimated in aCMexpt, points to which we return below.

We estimate c by using the NFT formula (9) to calculate the functional

connection matrix (fCMcal) as a function of c and then minimize δ(c), the

fractional norm of the difference between fCMcal and the experimental matrix

fCMexpt, with215

δ(c) =
‖fCMexpt − fCMcal(c)‖

‖fCMexpt‖
, (11)

where ‖ . . . ‖ denotes the Frobenius matrix norm defined as follows: for an n×n

matrix S with elements sij ,

‖S‖ =

 n∑
i,j=1

|sij |2
1/2

. (12)

Note that the ‖S‖ is a standard measure of the size of a matrix S (Zhou and

Doyle, 1998), which is zero if and only if S = 0.

3.2.1. Approximation of interhemispheric connections220

A well known anatomical feature of the normal brain is the existence of

strong one to one connections between homologous regions of the two hemi-

spheres (Bullmore and Sporns, 2009; Sporns, 2010; Honey et al., 2009). How-

ever, these connections are underestimated in the aCMexpt (Hagmann et al.,

2008). Here we first approximate the effect of the missing connections by replac-225

ing the submatrices that correspond to interhemispheric connections by scaled

identity matrices to represent connections between homologous regions in the

aCMexpt; in a second approximation we use scaled versions of the intrahemi-

spheric connections for this purpose. The approximations are further detailed

in the following paragraph.230

12
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A general block representation of the aCMexpt is

aCMexpt =

 A X

XT B

 , (13)

where the submatrix A represents connections within the right hemisphere, the

submatrix B represents ones within the left hemisphere, and the submatrix X

represents interhemispheric connections from right to left hemisphere; because

aCMexpt is symmetric, the transposed submatrix XT represents the connections235

from left to right hemisphere.

Many experiments underestimate the strengths of interhemispheric connec-

tions, and miss some altogether. However, anatomically it is known that the

strongest interhemispheric connections exist between exactly homologous re-

gions (Salvador et al., 2005; Kandel et al., 2000). Hence, to gain a better240

understanding of the role of the interhemispheric connections and their effects

on the fCM, we thus first explore an approximation in which all possible con-

nections between homologous regions are present and are assumed to have the

same strength. In this approximation we replace X in Eq. (13) by Xnew, with

Xnew = aI, (14)

where I is the identity matrix of the same size of X, and a is a small constant,245

which we later estimate by repeating the procedure discussed in Sec. 3.2, but

minimizing the norm in Eq. (10) as a function of both c and a. In a second

approximation we allow for the spatial spread of interhemispheric projections

beyond exactly homologous locations by approximating the interhemispheric

connectivity as a multiple of the mean intrahemispheric ones, and write250

Xnew = a(A + B)/2. (15)

13
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3.3. Multistep connections

The experimental literature shows that fCMs have fuller connectivity than

aCMs or deCMs (Honey et al., 2009; Hagmann et al., 2008; Honey et al., 2007)

because aCMs and deCMs includes only direct connections, whereas the fCM

incorporates effects from multistep (indirect) connections in addition to those of255

direct paths between RoIs, as discussed in Sec. 2 of the paper and by Robinson

(2012) and Robinson et al. (2014). Figure 1 illustrates direct and indirect paths

between RoIs.

For any square matrix S and a positive integer m, the ij element of Sm

measures the total weighted connectivity due to all m-step paths to i from j260

(Fiedler, 2008). Hence, Λ̃m describes connections that travel through m − 1

intermediate RoIs to reach their destination. One summary measure of the

relative contributions of multistep connections to the teCM Λ is thus obtained

by calculating the matrix norms of the individual Λ̃m, as discussed after Eq.(12).

Neural field theory (NFT) has been shown to be able to approximate brain265

activity in a wide variety of situations, based on an approximate propagator

that is the same at all points in the brain (Robinson et al., 1997; Robinson,

2012; Deco et al., 2008). The approximation of constant propagator structure

across the brain is in accord with the approximate first-order uniformity of short

to medium range connectivity found by many authors (Braitenberg and Schüz,270

1998; Henderson and Robinson, 2011, 2013; Roberts et al., 2016). The NFT

propagator expresses how brain activity is transmitted between points and its

purely spatial version was identified with the deCM by Robinson (2012).

3.4. Analytical estimation of multistep connections

The spatial deCM that corresponds to NFT with Laplacian spatial coupling275

on the 2D cortical surface is (Robinson, 2012; Robinson et al., 1997) is of the

14
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form

Λ̃(r, r′) = Λ̃(R) =
K0(R/ree)

2πr2ee
, (16)

in coordinate notation, where ree is the characteristic range of excitatory fibers,

R = |R|, R = r − r′, and K0 is a modified Bessel function of the second kind;

i.e., a Macdonald function (Abramowitz and Stegun, 1972). For notational280

simplicity, the spatial deCM, Λ̃(R) is written as Λ1(R), where the subscript 1

denotes a direct one-step connection.

The spatial Fourier transform of a 2D function F (R), and its inverse, are

F (k) =

∫
e−ik·RF (R)d2R, (17)

F (R) =
1

(2π)2

∫
eik·RF (k)d2k, (18)

where k is the wavenumber. For a radially symmetric propagator, the Fourier

transform and its inverse become285

F (k) = 2π

∫ ∞
0

R F (R) J0(kR) dR, (19)

F (R) =
1

2π

∫ ∞
0

k F (k) J0(kR) dk, (20)

where J0(kR) is the Bessel function of order zero. Applying Eq. (19) to Eq. (16),

we find

Λ1(k) =
1

r2ee

∫ ∞
0

R K0(R/ree) J0(kR) dR, (21)

=
1

1 + k2r2ee
, (22)

where Eq. 6.521.2 of Gradshteyn and Ryzhik (1980) has been used.

From anatomical studies it is observed that the connectivity across the cor-
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tex is translationally invariant in space to a first approximation (Braitenberg290

and Schüz, 1998; Henderson and Robinson, 2013), and this has been described

using NFT via a propagator approach (Robinson, 2012). A major advantage

of the translationally invariant system is that the propagator is parametrized

by coordinate differences, not by the coordinates themselves. The connectivity

between two RoIs via one intermediate RoI is a two-step process in the spatial295

deCM, which can be written as

Λ2(R−R′) =

∫
d2R′′ Λ1(R−R′′)Λ1(R′′ −R′), (23)

= {Λ1 ⊗ Λ1}(R−R′), (24)

where R′′ is the intermediate position connecting R and R′, and ⊗ denotes

the convolution. This means that, for the space-invariant system, the two-step

process is explained by the convolution of the propagator Λ1 over all possible

locations R′′ where the intermediate neurons could occur.300

Using inverse Fourier transform of Eq. (23) we thus find

Λ2(R) =

∫ ∞
0

k [Λ1(k)]2J0(kR)dk, (25)

via the convolution theorem (Olver, 2010), which states

{g ⊗ h}(k) = g(k)h(k). (26)

Multiple iteration of the convolution theorem then implies

Λm = Λ1 ⊗ Λ1 ⊗ . . .⊗ Λ1︸ ︷︷ ︸
m

. (27)
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Hence, we find that the propagator for the m-step process is given by

Λm(R) =
1

2π

∫ ∞
0

k [Λ1(k)]mJ0(kR)dk. (28)

Using Eq. 2.12.4-28 of Prudnikov et al. (1998), the integral in Eq. (28) then305

yields our final results.

Λm(R) =
1

r2ee

Km−1(R/ree)

2π(m− 1)!

(
R

2ree

)m−1

. (29)

Note that Λm depends only on the magnitude R of the distance between points

and not on the direction of one relative to the other. Equation (29) enables us

to analytically estimate the strength of connectivity between r and r′ via m− 1

intermediate RoIs. In later sections, we use the small-R limit of Eq. (28), which310

is (Olver, 2010).

Λ1(R) ≈ − ln(R/2ree)

2πr2ee
, (30)

Λm(R) ≈ 1

4πr2ee(m− 1)
, (31)

where Eq. (31) applies for m > 1.

The total strength of connectivity Xm from a given point via m − 1 inter-

mediate nodes is a useful measure of multistep connectivity, with

Xm(Rmax) ≈ 2π

∫ Rmax

0

RΛm(R)dR, (32)

where Rmax is the maximum range of fibers in the brain. A useful estimate of315

Rmax is obtained by setting the area of a circle of radiusRmax equal to the surface

area S of one brain hemisphere. Since the data used in this manuscript was regis-

tered to the template brain “fsaverage” in FreeSurfer v5.3 (http://freesurfer.net)

(Dale et al., 1999), S is calculated by taking the average surface area of the left
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and right hemispheres which yields S ≈ 930 cm2 and Rmax ≈ 17 cm, which320

almost identical to the longest ranges in the dataset discussed in Sec. 3.1.

The integral in Eq. (32) can be evaluated in the limit Rmax →∞ using Eq.

6.561.16 of Gradshteyn and Ryzhik (1980). This is a reasonable approximation

if there are few fibers longer than the typical half-circumference of one brain

hemisphere, which is in accord with anatomical and imaging experiments (Kan-325

del et al., 2000; Wedeen et al., 2008; Hagmann et al., 2008, 2010). This gives,

Xm(∞) = 1. (33)

The interpretation of this result is that every m-step path ends up somewhere

with unit probability; it generalizes the corresponding result of Robinson et al.

(1997) for single-step propagation. When the brain is just below its critical

point, only a fraction (eigenvalues λ̃1 < 1) of activity is regenerated at each330

step of transmission through multiple intermediate nodes. Hence, the above

Λm(R) must be multiplied by λ̃m1 to allow for this.

Experimental Estimate of Propagator vs. R

Equation (29) predicts the strength of connectivity between the spatial loca-

tions on the cortex as a function of their distance apart, R. In contrast, experi-335

mental connection matrices are expressed in terms of node number. To compare

with the experimental data, the experimental connectivities are binned accord-

ing to distances between nodes. The distance was calculated from the Cartesian

coordinates, which are also available from the experiment (see Sec. 3.1). The

results of average strength of connectivity Λm(R) are then normalized so that340

the integral Eq. (32) satisfies Xm = 1 even in the finite brain. The same steps

are followed to obtain the various experimental Λ̃m(R) from the corresponding

Λ̃m. For n regions on the cortex, the quantities can be collectively written in
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matrix notation as Λm(R) of size n× n.

4. Results345

In this section we first demonstrate results from the method described in

Sec. 3.2 to estimate the deCM by fitting the calculated fCM to the experimen-

tal fCM, then compare the best match calculated fCM with the experimental

fCM. Because the measured experimental aCM has underestimated interhemi-

spheric connections, we also illustrate our method on a modified experimental350

aCM by replacing the interhemispheric connection submatrix by a scaled iden-

tity matrix to approximately represent all connections between homologous re-

gions, described in Sec. 3.2.1. We then explore multistep connections using the

methods of Sec. 3.3.

4.1. Best fit fCM and Inferred deCM355

We use the norm-minimization method described in Sec. 3.2 to estimate

the best fit fCM to the experimental fCM, and hence the corresponding deCM,

for the experimental dataset described in Sec. 3.1. The difference between the

experimental fCM (fCMexpt) and the calculated fCM (fCMcal(c)) is shown by

plotting the fractional difference δ(c) from Eq. (11) against c in Fig. 3, where360

c is the constant in Eq. (10). This involves minimization with respect to only

one variable c, which is easily done by inspection of the of the graph δ(c) vs. c.

The curve has a singularity at the critical point (beyond this point the system

becomes linearly unstable) ccr = 1.49, where the largest eigenvalue λ̃1 of the

deCM estimated from Eq. (10) is 1 (Robinson, 2012); beyond this point the365

system is not linearly stable.
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Figure 2: Comparisons between experimental and calculated CMs. (a) Experimental aCM
from Hagmann et al. (2008). The top left submatrix represents the connectivity between RoIs
in the right hemisphere and the bottom right represents the connectivity between RoIs in
the left hemisphere. The other two submatrices represent interhemispheric connectivity. The
matrix entries represent connectivity strengths, indicated by color. (b) Experimental fCM
from (Hagmann et al., 2008; Honey et al., 2009). (c) Best fit inferred deCM for the exper-
imental aCM in (a). (d) Best fit fCMcal calculated via norm minimization from Eq. (10).
(e) Best fit deCM for the first approximation (aCMnew) in Eq. (14), where the interhemi-
spheric connections (top right quadrant and bottom left quadrant of the experimental aCM)
are replaced by the scaled identity matrix. (f) Best fit fCM calculated from the approximate
deCM in (e). (g) Best fit deCM for the second approximation (aCMnew) in Eq. (15), where
the submatrices corresponding to the interhemispheric connections (top right quadrant and
bottom left quadrant of the experimental aCM) are replaced by the scaled intrahemispheric
matrix. (h) Best fit fCM calculated from the deCM in (g).
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The minimum fractional difference between fCMs δmin corresponds to cnrm =

1.39. At cnrm the largest eigenvalue of the corresponding deCM, satisfies λ̃1 =

cnrm/ccr = 0.93, which implies that the brain is stable but near to the critical

point in its normal functioning (Robinson et al., 1997, 2002, 2004; Gray and370

Robinson, 2009; Robinson et al., 2009, 2014); stability justifies linear analysis.

Notably, the present estimate of the lowest mode’s eigenvalue uses data which

do not rely on this mode, owing to global mode removal; nonetheless, the result

cnrm = 0.93ccr is remarkably consistent with previously published stability and

criticality estimates from fCM inversion obtained by Robinson et al. (2014).375

Robinson et al. (2014) further discussed how their estimate was consistent with

fits to various sets of EEG-based measurements (Rowe et al., 2004; Robinson

et al., 2004; Van Albada et al., 2010), whose results implied λ̃1 to have an

average value of 0.85 ± 0.07 (Rowe et al., 2004), 0.84 ± 0.07 (Robinson et al.,

2004), and 0.84 ± 0.05 (Van Albada et al., 2010), based on data from 100 to380

1500 subjects. Other authors have also recently noted that the brain operates

in a slightly subcritical state (Priesemann et al., 2014; Hansen et al., 2015).

Figure 2 shows results from our norm-minimization method. For the exper-

imental dataset in Sec. 3.1, Fig. 2(a) shows aCMexpt. The top left submatrix

represents the connectivity between RoIs in the right hemisphere and the bot-385

tom right represents the connectivity between RoIs in the left hemisphere. The

other two submatrices represent interhemispheric connectivity. The primary

diagonal and nearby entries show that RoIs are strongly connected to nearby

regions via intrahemispheric connections. The secondary diagonals correspond

to interhemispheric connections between homologous regions. These and nearby390

interhemispheric connections are seen to be only patchily detected in these data,

as discussed in Sec. 3.1. The colorbar on the right indicate the strength of con-

nectivity between RoIs, where black indicates absence of the connection.
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Figure 2(b) shows the experimental fCM corresponding to the aCMexpt,

with the same RoI ordering. We see that fCMexpt is fuller than aCMexpt, with395

strong connectivity extending further away from the primary and secondary

diagonals. It is noticeable that the connectivity pattern in the submatrix corre-

sponding to the interhemispheric connections is similar to that of the submatrix

corresponding to the intrahemispheric connections.

Figure 3: Fractional norm δ(c) of the difference between experimental and calculated fCMs
vs. c from Eq. (11).

Figure 2(c) shows the deCM inferred on the assumption that it is a multiple400

of aCMexpt, estimated via norm minimization using the ansatz (10). Figure

2(d) shows the corresponding best fit calculated fCM inferred via norm mini-

mization after removal of global effects; notably, it is not a multiple of the one

in Fig. 2(b) because it has a different proximity to criticality (Robinson, 2012).

The calculated fCM is the one that gives the best overall fit, as quantified by the405

norm. It reproduces the pattern of interhemispheric connections between RoIs

near the primary diagonal reasonably well. However, the fCMcal has noticeably

sparser connectivity in the submatrices that correspond to interhemispheric con-

nections, particularly near the secondary diagonal. In contrast some rows and
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columns have been enhanced along most of their length, because the detected410

on-diagonal interhemispheric connections in the aCM have been scaled up by

our method to compensate for the underestimate of others when minimizing the

overall norm.

If we replace the interhemispheric parts of the aCMexpt by scaled identity

matrices to approximately account for underestimated connections, we can es-415

timate a in Eq. (14) and c in (10) simultaneously via norm minimization. The

contour plot of δmin vs. a and c in Fig. 4(a) shows that δmin occurs at a = 0.116

and c = 1.31. The corresponding deCM (deCMnew) has largest eigenvalue

λ̃1 = 0.93, which is consistent with the largest eigenvalue found above. Fig-

ure 2(e) shows the deCM for the aCMnew estimated from this procedure. Fig-420

ure 2(f) shows the corresponding fCM (fCMnew) calculated from the deCM in

Fig. 2(e) via norm minimization. The calculated fCMnew now shows a more

uniform secondary diagonal that corresponds to interhemispheric connections,

with less evidence of anomalously strengthened rows and columns. Notably,

the calculated fCMnew has many entries that lie off the secondary diagonal,425

even though only the exact secondary diagonal was included in the approxi-

mate aCM. The range of connectivity strengths is consistent with those of the

fCMexpt, but the calculated fCMnew is not quite as full as the experimental

one, likely due to the fact that no off-diagonal interhemispheric connections are

included in the approximate aCM in Fig. 2(e).430

Figure 2(g) shows the deCM for the aCMnew estimated by our second ap-

proximation of replacing the interhemispheric parts of the aCMexpt by scaled in-

trahemispheric matrices, as in Eq. (15). The parameters a = 0.238 and c = 1.28

were estimated using above procedure, as seen in Fig. 4(b). Figure 2(h) shows

the fCM (fCMnew) calculated from the deCM in Fig. 2(g) via norm minimiza-435

tion. The calculated fCMnew now shows a secondary diagonal that corresponds
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to interhemispheric connections. As for Figs. 2(d) and 2(f), the range of con-

nectivity strengths in the Fig. 2(h) is consistent with those of the fCMexpt, but

the calculated fCMnew is still visibly sparser than the experimental one.

c

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45
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0.924

0.925
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Figure 4: Contour plot of δmin vs. a and c, with values indicated in the colorbar on the
right. The value of a and c that correspond to minimum δmin is marked white. (a) estimates
when the interhemispheric parts of the aCMexpt is replaced by scaled identity matrices, in
Eq. (14). (b) estimates when the interhemispheric parts of the aCMexpt is replaced by scaled
intrahemispheric matrices, in Eq. (15).

We note that both approximations in Eq. (14) and (15) implied connectiv-440

ity strengths of fCMnew consistent with those of the fCMexpt and Figs. 2(f)

and 2(h) confirm that experimental measurements underestimate interhemi-

spheric connections. These approximations yield δmin = 0.915 and 0.918, re-

spectively, a negligible difference. However, in reality there do exist interhemi-

spheric connections between non-homologous regions, so the approximation (15)445

in Fig. 2(g) is more appropriate. Hence, in the following sections we use the

approximation Eq. (15).

4.2. Multistep connections

The fCM incorporates effects from multistep connections in addition to the

direct path between RoIs, as discussed in Secs 2 and 3.3, but these cannot be450
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obtained directly from imaging experiments. This section presents results from

analysis of direct and multistep connections, using the NFT described in Sec. 2

and the analytical approach described in Sec. 3.3. Here we present qualitative

and quantitative results on connectivity in the brain with m-step connections

and the contribution to functional activity based on the experimental dataset455

in Sec. 3.1.

The various multistep connections represented by the terms in right hand

side of Eq. (7) are next investigated using deCMnew in Fig. 2(g). The first

six terms are shown in Fig. 5 in matrix form for m = 1 − 6, estimated using

the method in Sec. 3.3 with λ̃1 = 0.93. The interhemispheric connection sub-460

matrices within Λ̃m display prominent connections with regions of the opposite

hemisphere other than those that are directly homologous. The interhemispheric

connection submatrices are very similar in structure to the intrahemispheric

submatrices. These results demonstrate the essential role of interhemispheric

connections in determining the functional connectivity, which implies that their465

underestimation by many imaging techniques is an impediment to fully interre-

lating deCMs and fCMs.

We see from Fig. 5 that the connectivity tends to spread over the cortex

as the number of intermediate nodes increases, with the matrices Λ̃m showing

fuller connectivity with increasing m. The experimental tractography technique470

is limited to measuring the strengths of direct connections (m = 1) between

RoIs. Our NFT method enables us to estimate the strength of connections

between RoIs via m-step connections. The matrix entries in Λ̃m represent the

strength of connections that travel m-step paths to reach their destination via

m− 1 intermediate RoIs.475

We next compare the experimental Λ̃m with the theoretical Λm from Eq. (29).

To do this we calculate the distance R between the RoIs using their Cartesian
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coordinates from the original experiments (see Sec. 3.1). We then use the an-

alytical definition of Λm(R) in Eq. (29) to calculate the theoretical strength of

connectivity for various m. The matrix representation of the first six terms is480

shown in Fig. 6, where we see that the connectivity spreads over the cortex as

the number of intermediate nodes increases. These matrices are increasingly

similar to the experimental ones in Fig. 5 as m increases.

The average strengths of experimental connectivity Λ̃m(R) vs. R are plotted

in Fig. 7 for m = 1, . . . , 6, normalized to total connectivity Xm = 1 in (32), along485

with the corresponding theoretical curves for ree = 5.7 mm, which gives the best

fit at R < 40 mm for m = 1. At R > 50 mm there is a considerable excess of

long-range fibers in the experimental case for m = 1 relative to extrapolation

of the short-range theoretical approximation, a point that was discussed by

Henderson and Robinson (2011). A more general theoretical prediction could490

be generated by including a dual-range distribution to account for these fibers,

but we do not pursue this point here. For 10 mm < R < 40 mm, the fit between

theory and data is good and the value of ree = 5.7 mm is consistent with the

value of 6.2 mm obtained by Henderson and Robinson (2013) for these data

when fitted over a slightly different range. To avoid any confusion, the fact that495

there is an excess of long range fibers relative to simple extrapolation of the

numbers of short range ones does not contradict the fact that interhemispheric

fibers are often underestimated by diffusion imaging — the excess would be even

greater if they were all detected.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Matrix representations of the first six eCM terms of Eq. (7), calculated for the
aCMnew using second approximation in Eq. (15). (a) show direct connectivity of RoIs, Λ̃1,
(b) two-step connectivity via 1 intermediate RoI, Λ̃2, (c) Λ̃3, (d) Λ̃4, (e) Λ̃5 and (f) Λ̃6. The
colors indicate strength of connectivity per unit area.
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Theoretical estimates of the first six terms of the teCM from Eq. (29). Matrix
entries represent the strength of connections per unit area as indicated in the color bar. (a)
The inferred deCM Λ1, shows connectivity of RoIs with m = 1, (b) Λ2, (c) Λ3, (d) Λ4, (e)
Λ5 and (f) Λ6.
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Figure 7: Comparison of the analytically estimated strength of connectivity per unit area
with the experimental measurements for m = 1 (blue), m = 2 (red), m = 3 (yellow), m = 4
(purple), m = 5 (green), m = 6 (cyan). Dots represent experimental data and solid lines
represent the analytical expression (29) for ree = 5.7 mm. (a) Average connectivity strength
vs. R. (b) Zoom of (a) to focus on results up to R = 60 mm. (c) Ratios of experimental to
analytical values from (b).
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At R < 10 mm, we see that the theoretical curve for m = 1 lies systemati-500

cally above the experimental one, as seen most clearly in the zoom in Fig. 7(b).

This is expected because the theoretical result does not incorporate a resolution

limit, whereas the typical RoI in these data has an area of 2 cm2, which corre-

sponds to a typical radius of 8 mm; because self-connections were omitted from

the experimental CMs, the value of Λ̃1(R) is expected to have been underesti-505

mated over roughly this range (and some RoIs are larger, so the effects extend

somewhat beyond 8 mm), with no connections below the ∼ 2 mm resolution of

the measurements, as seen in the figure. In the range 10 – 40 mm the theoretical

and experimental curves agree remarkably well in terms of both magnitude and

slope. We see that the connectivity spreads to larger R as m increases, with510

progressively weaker connectivity at relatively small R.

Figure 7(c) shows ratios of the experimental data in Fig. 7(b) to the theoret-

ical ones. This underlines the near-unit ratio on average for all m over distances

10 – 40 mm, with the ratios more nearly constant for larger m.

4.3. Connectivity From a Seed Voxel515

A common way of exploring brain connectivity is to map the connections

that emerge from a particular seed voxel. As an illustration, we show this in

Fig. 8 for m-step connections for various m, starting with an arbitrarily chosen

seed voxel that happens to lie in the left precuneus (PCUN) and using the

deCMnew shown in Fig. 5(a). We see that the connections rapidly extend520

across the cortex, with contrahemispheric connections lagging about one step

behind those in the ipsilateral hemisphere, as expected from the necessity to have

one interhemispheric connection in addition to any subsequent intrahemispheric

ones in the contralateral case. Connectivity becomes increasingly uniform across

the brain, but the short-range connections remain dominant even at m = 12.525

Notably, the magnitude of the largest connections decreases steadily with m.
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Qualitatively, very similar results are found for other seed locations.

(a) (b)

(c) (d)

(e) (f)

Figure 8: Connectivity from the seed voxel via m-step. Top view of the brain, plotted
using the same coordinate system as the experimental data. A node (blue marker) from the
precuneus (PCUN) is chosen to illustrate the anatomical connectivity strength with other RoIs
of the brain. The dots represent location of RoIs on the brain. The blue marker represents
the location of the precuneus. The color of each dot represents the strength of connectivity
from PCUN, as indicated by the color bars. (a) m = 1. (b) m = 2. (c) m = 4. (d) m = 6.
(e) m = 10. (f) m = 12.
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5. Summary and Discussion

Neural field theory relationships between effective and functional connec-

tivity matrices are used to develop a simple approximate norm-minimization530

method for obtaining direct effective connection matrices (deCMs) from func-

tional CMs. Comparison with experimental results shows that this gives rea-

sonable results so along as interhemispheric connections are adequately incorpo-

rated. Multistep connection matrices, obtained from powers of the deCM, are

shown to be well represented by neural field theory, and to provide a powerful535

way of analyzing multistep connectivity in the brain. The main results are:

(i) By using the ansatz that the deCM is proportional to the aCM, we

calculated the corresponding fCM based on methods from Robinson (2012). By

minimizing the norm of the difference between this fCM and an experimentally

measured one, we optimized the scaling factor, and thereby infer the normalized540

deCM.

(ii) When applied to test data from the literature, norm minimization yielded

a best fit that corresponds to the cortex least stable mode being at approxi-

mately 93% of the critical value for a saddle node bifurcation into instability.

Despite this estimate not relying on data from the last stable mode itself, it is545

consistent with prior quantitative estimates (Rowe et al., 2004; Robinson et al.,

2004; Van Albada et al., 2010; Roberts et al., 2016), with conclusions from

a model system (Deco et al., 2014), and with more recent studies that con-

firmed these earlier conclusions that the brain operates in a slightly subcritical

state (Priesemann et al., 2014; Hansen et al., 2015). However, interhemispheric550

connections are underestimated where they are absent or underestimated in

the initial aCM, leading to overemphasis of those that remain and resulting in

anomalous patterns in the derived fCM.

(iii) After introducing connections between exactly homologous regions in
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opposite hemispheres as an ansatz to replace underestimated ones (Robinson555

et al., 2016), norm minimization yields a much better match between predicted

and experimental fCMs, with minimal anomalous structure. The system is

estimated to lie at 93% of the critical point.

The filling factor of the predicted fCM is slightly less than the experimen-

tal one, because only exactly homologous connections between hemispheres are560

included in the deCM; nonetheless, the resulting fCM does include substantial

nonhomologous entries. The conclusion that interhemispheric connections are

critical to determining the structure of the fCM accords with those of other re-

cent publications, based on inversion via eigenfunction analysis (Robinson et al.,

2014) and by means of addition and fitting of entries in the aCM (Deco et al.,565

2014) within a specific neural field model. Notably, Robinson (2012) showed

that fCMs with structure qualitatively consistent with observation only emerge

near criticality.

(iv) When the interhemispheric connection matrices are approximated as

being proportional to the intrahemispheric ones, norm minimization yields a570

much better match between predicted and experimental fCMs and the system

is again estimated to lie at 93% of the critical point.

(v) The approximate deCMs obtained by the above method are correctly

normalized in an absolute sense (Robinson, 2012). Hence, powers of this matrix

give the relative patterns and strengths of multistep connections. These spread575

progressively as the number of intermediate RoIs increases, with spreading from

a seed voxel lagging roughly one step in the contralateral hemisphere compared

to the ipsilateral one.

(vi) deCMs estimated by our methods are very similar in form to the theoret-

ical ones derived from neural field theory, aside from a normalization factor and580

effects due to the long-range tails neglected in the analytic work here (although
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they can be included at the cost of additional algebraic complexity). This result

further confirms recent conclusions that cortical connectivity is dominated by

a uniform isotropic component that does not contain first-order modularity or

hierarchy beyond what is implicit in the decrease of average connection strength585

with distance (Henderson and Robinson, 2011, 2013, 2014). To the extent that

modularity, hierarchy, and nonuniformity are present in the cortex, they do

not dominate leading-order statistics and result in part from the less uniform

properties of the large-R tail of the connectivity distribution (Henderson and

Robinson, 2014). Recently, departures from the uniformity approximation have590

been reliably detected for the first time (Roberts et al., 2016).

Overall, the method presented here enables simple approximate inversion of

fCMs to obtain normalized deCMs, provided the form of the interhemispheric

connections is included to a reasonable approximation. This is of great utility

because it does not rely on a particular model of the system dynamics at the595

network nodes and yields estimates of effective connectivities that are difficult

or impossible to measure experimentally.
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