3,601 research outputs found

    Realizability of the normal form for the triple-zero nilpotency in a class of delayed nonlinear oscillators

    Full text link
    The effects of delayed feedback terms on nonlinear oscillators has been extensively studied, and have important applications in many areas of science and engineering. We study a particular class of second-order delay-differential equations near a point of triple-zero nilpotent bifurcation. Using center manifold and normal form reduction, we show that the three-dimensional nonlinear normal form for the triple-zero bifurcation can be fully realized at any given order for appropriate choices of nonlinearities in the original delay-differential equation.Comment: arXiv admin note: text overlap with arXiv:math/050539

    Delay-induced multistability near a global bifurcation

    Full text link
    We study the effect of a time-delayed feedback within a generic model for a saddle-node bifurcation on a limit cycle. Without delay the only attractor below this global bifurcation is a stable node. Delay renders the phase space infinite-dimensional and creates multistability of periodic orbits and the fixed point. Homoclinic bifurcations, period-doubling and saddle-node bifurcations of limit cycles are found in accordance with Shilnikov's theorems.Comment: Int. J. Bif. Chaos (2007), in prin

    Zero-Hopf bifurcation in the Van der Pol oscillator with delayed position and velocity feedback

    Full text link
    In this paper, we consider the traditional Van der Pol Oscillator with a forcing dependent on a delay in feedback. The delay is taken to be a nonlinear function of both position and velocity which gives rise to many different types of bifurcations. In particular, we study the Zero-Hopf bifurcation that takes place at certain parameter values using methods of centre manifold reduction of DDEs and normal form theory. We present numerical simulations that have been accurately predicted by the phase portraits in the Zero-Hopf bifurcation to confirm our numerical results and provide a physical understanding of the oscillator with the delay in feedback

    Asymptotic methods for delay equations.

    Get PDF
    Asymptotic methods for singularly perturbed delay differential equations are in many ways more challenging to implement than for ordinary differential equations. In this paper, four examples of delayed systems which occur in practical models are considered: the delayed recruitment equation, relaxation oscillations in stem cell control, the delayed logistic equation, and density wave oscillations in boilers, the last of these being a problem of concern in engineering two-phase flows. The ways in which asymptotic methods can be used vary from the straightforward to the perverse, and illustrate the general technical difficulties that delay equations provide for the central technique of the applied mathematician. © Springer 2006

    Complex oscillations in the delayed Fitzhugh-Nagumo equation

    Full text link
    Motivated by the dynamics of neuronal responses, we analyze the dynamics of the Fitzhugh-Nagumo slow-fast system with delayed self-coupling. This system provides a canonical example of a canard explosion for sufficiently small delays. Beyond this regime, delays significantly enrich the dynamics, leading to mixed-mode oscillations, bursting and chaos. These behaviors emerge from a delay-induced subcritical Bogdanov-Takens instability arising at the fold points of the S-shaped critical manifold. Underlying the transition from canard-induced to delay-induced dynamics is an abrupt switch in the nature of the Hopf bifurcation
    • 

    corecore