3,311 research outputs found

    An efficient hybrid model and dynamic performance analysis for multihop wireless networks

    Get PDF
    Multihop wireless networks can be subjected to nonstationary phenomena due to a dynamic network topology and time varying traffic. However, the simulation techniques used to study multihop wireless networks focus on the steady-state performance even though transient or nonstationary periods will often occur. Moreover, the majority of the simulators suffer from poor scalability. In this paper, we develop an efficient performance modeling technique for analyzing the time varying queueing behavior of multihop wireless networks. The one-hop packet transmission (service) time is assumed to be deterministic, which could be achieved by contention-free transmission, or approximated in sparse or lightly loaded multihop wireless networks. Our model is a hybrid of time varying adjacency matrix and fluid flow based differential equations, which represent dynamic topology changes and nonstationary network queues, respectively. Numerical experiments show that the hybrid fluid based model can provide reasonably accurate results much more efficiently than standard simulators. Also an example application of the modeling technique is given showing the nonstationary network performance as a function of node mobility, traffic load and wireless link quality. © 2013 IEEE

    Fuzzy based load and energy aware multipath routing for mobile ad hoc networks

    Get PDF
    Routing is a challenging task in Mobile Ad hoc Networks (MANET) due to their dynamic topology and lack of central administration. As a consequence of un-predictable topology changes of such networks, routing protocols employed need to accurately capture the delay, load, available bandwidth and residual node energy at various locations of the network for effective energy and load balancing. This paper presents a fuzzy logic based scheme that ensures delay, load and energy aware routing to avoid congestion and minimise end-to-end delay in MANETs. In the proposed approach, forwarding delay, average load, available bandwidth and residual battery energy at a mobile node are given as inputs to a fuzzy inference engine to determine the traffic distribution possibility from that node based on the given fuzzy rules. Based on the output from the fuzzy system, traffic is distributed over fail-safe multiple routes to reduce the load at a congested node. Through simulation results, we show that our approach reduces end-to-end delay, packet drop and average energy consumption and increases packet delivery ratio for constant bit rate (CBR) traffic when compared with the popular Ad hoc On-demand Multipath Distance Vector (AOMDV) routing protocol

    A novel approach to quality-of-service provisioning in trusted relay Quantum Key Distribution networks

    Get PDF
    In recent years, noticeable progress has been made in the development of quantum equipment, reflected through the number of successful demonstrations of Quantum Key Distribution (QKD) technology. Although they showcase the great achievements of QKD, many practical difficulties still need to be resolved. Inspired by the significant similarity between mobile ad-hoc networks and QKD technology, we propose a novel quality of service (QoS) model including new metrics for determining the states of public and quantum channels as well as a comprehensive metric of the QKD link. We also propose a novel routing protocol to achieve high-level scalability and minimize consumption of cryptographic keys. Given the limited mobility of nodes in QKD networks, our routing protocol uses the geographical distance and calculated link states to determine the optimal route. It also benefits from a caching mechanism and detection of returning loops to provide effective forwarding while minimizing key consumption and achieving the desired utilization of network links. Simulation results are presented to demonstrate the validity and accuracy of the proposed solutions.Web of Science28118116
    • …
    corecore