914 research outputs found

    A Survey on Delay-Aware Resource Control for Wireless Systems --- Large Deviation Theory, Stochastic Lyapunov Drift and Distributed Stochastic Learning

    Full text link
    In this tutorial paper, a comprehensive survey is given on several major systematic approaches in dealing with delay-aware control problems, namely the equivalent rate constraint approach, the Lyapunov stability drift approach and the approximate Markov Decision Process (MDP) approach using stochastic learning. These approaches essentially embrace most of the existing literature regarding delay-aware resource control in wireless systems. They have their relative pros and cons in terms of performance, complexity and implementation issues. For each of the approaches, the problem setup, the general solution and the design methodology are discussed. Applications of these approaches to delay-aware resource allocation are illustrated with examples in single-hop wireless networks. Furthermore, recent results regarding delay-aware multi-hop routing designs in general multi-hop networks are elaborated. Finally, the delay performance of the various approaches are compared through simulations using an example of the uplink OFDMA systems.Comment: 58 pages, 8 figures; IEEE Transactions on Information Theory, 201

    Validity of heavy traffic steady-state approximations in generalized Jackson Networks

    Full text link
    We consider a single class open queueing network, also known as a generalized Jackson network (GJN). A classical result in heavy-traffic theory asserts that the sequence of normalized queue length processes of the GJN converge weakly to a reflected Brownian motion (RBM) in the orthant, as the traffic intensity approaches unity. However, barring simple instances, it is still not known whether the stationary distribution of RBM provides a valid approximation for the steady-state of the original network. In this paper we resolve this open problem by proving that the re-scaled stationary distribution of the GJN converges to the stationary distribution of the RBM, thus validating a so-called ``interchange-of-limits'' for this class of networks. Our method of proof involves a combination of Lyapunov function techniques, strong approximations and tail probability bounds that yield tightness of the sequence of stationary distributions of the GJN.Comment: Published at http://dx.doi.org/10.1214/105051605000000638 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Computing stationary probability distributions and large deviation rates for constrained random walks. The undecidability results

    Full text link
    Our model is a constrained homogeneous random walk in a nonnegative orthant Z_+^d. The convergence to stationarity for such a random walk can often be checked by constructing a Lyapunov function. The same Lyapunov function can also be used for computing approximately the stationary distribution of this random walk, using methods developed by Meyn and Tweedie. In this paper we show that, for this type of random walks, computing the stationary probability exactly is an undecidable problem: no algorithm can exist to achieve this task. We then prove that computing large deviation rates for this model is also an undecidable problem. We extend these results to a certain type of queueing systems. The implication of these results is that no useful formulas for computing stationary probabilities and large deviations rates can exist in these systems

    Concave Switching in Single and Multihop Networks

    Full text link
    Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {(α,g\alpha,g)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.Comment: 28 page

    Scheduling with Rate Adaptation under Incomplete Knowledge of Channel/Estimator Statistics

    Full text link
    In time-varying wireless networks, the states of the communication channels are subject to random variations, and hence need to be estimated for efficient rate adaptation and scheduling. The estimation mechanism possesses inaccuracies that need to be tackled in a probabilistic framework. In this work, we study scheduling with rate adaptation in single-hop queueing networks under two levels of channel uncertainty: when the channel estimates are inaccurate but complete knowledge of the channel/estimator joint statistics is available at the scheduler; and when the knowledge of the joint statistics is incomplete. In the former case, we characterize the network stability region and show that a maximum-weight type scheduling policy is throughput-optimal. In the latter case, we propose a joint channel statistics learning - scheduling policy. With an associated trade-off in average packet delay and convergence time, the proposed policy has a stability region arbitrarily close to the stability region of the network under full knowledge of channel/estimator joint statistics.Comment: 48th Allerton Conference on Communication, Control, and Computing, Monticello, IL, Sept. 201

    The Power of Online Learning in Stochastic Network Optimization

    Get PDF
    In this paper, we investigate the power of online learning in stochastic network optimization with unknown system statistics {\it a priori}. We are interested in understanding how information and learning can be efficiently incorporated into system control techniques, and what are the fundamental benefits of doing so. We propose two \emph{Online Learning-Aided Control} techniques, OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2}, that explicitly utilize the past system information in current system control via a learning procedure called \emph{dual learning}. We prove strong performance guarantees of the proposed algorithms: OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} achieve the near-optimal [O(ϵ),O([log(1/ϵ)]2)][O(\epsilon), O([\log(1/\epsilon)]^2)] utility-delay tradeoff and OLAC2\mathtt{OLAC2} possesses an O(ϵ2/3)O(\epsilon^{-2/3}) convergence time. OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} are probably the first algorithms that simultaneously possess explicit near-optimal delay guarantee and sub-linear convergence time. Simulation results also confirm the superior performance of the proposed algorithms in practice. To the best of our knowledge, our attempt is the first to explicitly incorporate online learning into stochastic network optimization and to demonstrate its power in both theory and practice

    The Power of Online Learning in Stochastic Network Optimization

    Full text link
    In this paper, we investigate the power of online learning in stochastic network optimization with unknown system statistics {\it a priori}. We are interested in understanding how information and learning can be efficiently incorporated into system control techniques, and what are the fundamental benefits of doing so. We propose two \emph{Online Learning-Aided Control} techniques, OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2}, that explicitly utilize the past system information in current system control via a learning procedure called \emph{dual learning}. We prove strong performance guarantees of the proposed algorithms: OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} achieve the near-optimal [O(ϵ),O([log(1/ϵ)]2)][O(\epsilon), O([\log(1/\epsilon)]^2)] utility-delay tradeoff and OLAC2\mathtt{OLAC2} possesses an O(ϵ2/3)O(\epsilon^{-2/3}) convergence time. OLAC\mathtt{OLAC} and OLAC2\mathtt{OLAC2} are probably the first algorithms that simultaneously possess explicit near-optimal delay guarantee and sub-linear convergence time. Simulation results also confirm the superior performance of the proposed algorithms in practice. To the best of our knowledge, our attempt is the first to explicitly incorporate online learning into stochastic network optimization and to demonstrate its power in both theory and practice

    Nonlinear Markov Processes in Big Networks

    Full text link
    Big networks express various large-scale networks in many practical areas such as computer networks, internet of things, cloud computation, manufacturing systems, transportation networks, and healthcare systems. This paper analyzes such big networks, and applies the mean-field theory and the nonlinear Markov processes to set up a broad class of nonlinear continuous-time block-structured Markov processes, which can be applied to deal with many practical stochastic systems. Firstly, a nonlinear Markov process is derived from a large number of interacting big networks with symmetric interactions, each of which is described as a continuous-time block-structured Markov process. Secondly, some effective algorithms are given for computing the fixed points of the nonlinear Markov process by means of the UL-type RG-factorization. Finally, the Birkhoff center, the Lyapunov functions and the relative entropy are used to analyze stability or metastability of the big network, and several interesting open problems are proposed with detailed interpretation. We believe that the results given in this paper can be useful and effective in the study of big networks.Comment: 28 pages in Special Matrices; 201

    Stability of multi-dimensional birth-and-death processes with state-dependent 0-homogeneous jumps

    Get PDF
    We study the positive recurrence of multi-dimensional birth-and-death processes describing the evolution of a large class of stochastic systems, a typical example being the randomly varying number of flow-level transfers in a telecommunication wire-line or wireless network. We first provide a generic method to construct a Lyapunov function when the drift can be extended to a smooth function on RN\mathbb R^N, using an associated deterministic dynamical system. This approach gives an elementary proof of ergodicity without needing to establish the convergence of the scaled version of the process towards a fluid limit and then proving that the stability of the fluid limit implies the stability of the process. We also provide a counterpart result proving instability conditions. We then show how discontinuous drifts change the nature of the stability conditions and we provide generic sufficient stability conditions having a simple geometric interpretation. These conditions turn out to be necessary (outside a negligible set of the parameter space) for piece-wise constant drifts in dimension 2.Comment: 18 pages, 4 figure
    corecore