46,526 research outputs found

    Stability and Generalization in Structured Prediction

    Get PDF
    Abstract Structured prediction models have been found to learn effectively from a few large examplessometimes even just one. Despite empirical evidence, canonical learning theory cannot guarantee generalization in this setting because the error bounds decrease as a function of the number of examples. We therefore propose new PAC-Bayesian generalization bounds for structured prediction that decrease as a function of both the number of examples and the size of each example. Our analysis hinges on the stability of joint inference and the smoothness of the data distribution. We apply our bounds to several common learning scenarios, including max-margin and soft-max training of Markov random fields. Under certain conditions, the resulting error bounds can be far more optimistic than previous results and can even guarantee generalization from a single large example

    TactileGCN: A Graph Convolutional Network for Predicting Grasp Stability with Tactile Sensors

    Get PDF
    Tactile sensors provide useful contact data during the interaction with an object which can be used to accurately learn to determine the stability of a grasp. Most of the works in the literature represented tactile readings as plain feature vectors or matrix-like tactile images, using them to train machine learning models. In this work, we explore an alternative way of exploiting tactile information to predict grasp stability by leveraging graph-like representations of tactile data, which preserve the actual spatial arrangement of the sensor's taxels and their locality. In experimentation, we trained a Graph Neural Network to binary classify grasps as stable or slippery ones. To train such network and prove its predictive capabilities for the problem at hand, we captured a novel dataset of approximately 5000 three-fingered grasps across 41 objects for training and 1000 grasps with 10 unknown objects for testing. Our experiments prove that this novel approach can be effectively used to predict grasp stability

    On the Stability of Structured Prediction

    Get PDF
    Many important applications of artificial intelligence---such as image segmentation, part-of-speech tagging and network classification---are framed as multiple, interdependent prediction tasks. These structured prediction problems are typically modeled using some form of joint inference over the outputs, to exploit the relational dependencies. Joint reasoning can significantly improve predictive accuracy, but it introduces a complication in the analysis of structured models: the stability of inference. In optimizations involving multiple interdependent variables, such as joint inference, a small change to the input or parameters could induce drastic changes in the solution. In this dissertation, I investigate the impact of stability in structured prediction. I explore two topics, connected by the stability of inference. First, I provide generalization bounds for learning from a limited number of examples with large internal structure. The effective learning rate can be significantly sharper than rates given in related work. Under certain conditions on the data distribution and stability of the predictor, the bounds decrease with both the number of examples and the size of each example, meaning one could potentially learn from a single giant example. Secondly, I investigate the benefits of learning with strongly convex variational inference. Using the duality between strong convexity and stability, I demonstrate, both theoretically and empirically, that learning with a strongly convex free energy can result in significantly more accurate marginal probabilities. One consequence of this work is a new technique that ``strongly convexifies" many free energies used in practice. These two seemingly unrelated threads are tied by the idea that stable inference leads to lower error, particularly in the limited example setting, thereby demonstrating that inference stability is of critical importance to the study and practice of structured prediction
    corecore