270 research outputs found

    Grasp planning under uncertainty

    Get PDF
    The planning of dexterous grasps for multifingered robot hands operating in uncertain environments is covered. A sensor-based approach to the planning of a reach path prior to grasping is first described. An on-line, joint space finger path planning algorithm for the enclose phase of grasping was then developed. The algorithm minimizes the impact momentum of the hand. It uses a Preshape Jacobian matrix to map task-level hand preshape requirements into kinematic constraints. A master slave scheme avoids inter-finger collisions and reduces the dimensionality of the planning problem

    Examples of 3D grasp quality computations

    Get PDF
    Previous grasp quality research is mainly theoretical, and has assumed that contact types and positions are given, in order to preserve the generality of the proposed quality measures. The example results provided by these works either ignore hand geometry and kinematics entirely or involve only the simplest of grippers. We present a unique grasp analysis system that, when given a 3D object, hand, and pose for the hand, can accurately determine the types of contacts that will occur between the links of the hand and the object, and compute two measures of quality for the grasp. Using models of two articulated robotic hands, we analyze several grasps of a polyhedral model of a telephone handset, and we use a novel technique to visualize the 6D space used in these computations. In addition, we demonstrate the possibility of using this system for synthesizing high quality grasps by performing a search over a subset of possible hand configurations

    Constructing minimum deflection fixture arrangements using frame invariant norms

    Get PDF
    This paper describes a fixture planning method that minimizes object deflection under external loads. The method takes into account the natural compliance of the contacting bodies and applies to two-dimensional and three-dimensional quasirigid bodies. The fixturing method is based on a quality measure that characterizes the deflection of a fixtured object in response to unit magnitude wrenches. The object deflection measure is defined in terms of frame-invariant rigid body velocity and wrench norms and is therefore frame invariant. The object deflection measure is applied to the planning of optimal fixture arrangements of polygonal objects. We describe minimum-deflection fixturing algorithms for these objects, and make qualitative observations on the optimal arrangements generated by the algorithms. Concrete examples illustrate the minimum deflection fixturing method. Note to Practitioners-During fixturing, a workpiece needs to not only be stable against external perturbations, but must also stay within a specified tolerance in response to machining or assembly forces. This paper describes a fixture planning approach that minimizes object deflection under applied work loads. The paper describes how to take local material deformation effects into account, using a generic quasirigid contact model. Practical algorithms that compute the optimal fixturing arrangements of polygonal workpieces are described and examples are then presented
    • …
    corecore