15,420 research outputs found

    Optimal Control of Delay Systems with Differential and Algebraic Dynamic Constraints

    Get PDF
    This paper concerns constrained dynamic optimization problems governed by delay control systems whose dynamic constraints are described by both delay-differential inclusions and linear algebraic equations. This is a new class of optimal control systems that, on one hand, may be treated as a specific type of variational problems for neutral functional-differential inclusions while, on the other hand, is related to a special class of differential-algebraic systems with a general delay-differential inclusion and a linear constraint link between slow and fast variables. We pursue a two-hold goal: to study variational stability for this class of control systems with respect to discrete approximations and to derive necessary optimality conditions for both delayed differential-algebraic systems under consideration and their finite-difference counterparts using modern tools of variational analysis and generalized differentiation. The authors are not familiar with any results in these directions for such systems even in the delay-free case. In the first part of the paper we establish the value convergence of discrete approximations as well as the strong convergence of optimal arcs in the classical Sobolev space W^1,2 Then using discrete approximations as a vehicle, we derive necessary optimality conditions for the initial continuous-time systems in both Euler-Lagrange and Hamiltonian forms via basic generalized differential constructions of variational analysis

    Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: Application to ball-juggler robots

    Get PDF
    This paper addresses the robust control problem of mechanical systems with hybrid dynamics in port-Hamiltonian form. It is assumed that only the position states are measurable, and time-delay and saturation constraint affect the control signal. An extended state observer is designed after a coordinate transformation. The effect of the time delay in the control signal is neutralized by applying Pade ́ approximant and augmenting the system states. An assistant system with faster convergence is developed to handle actuators saturation. Fractional-order sliding mode controller acts as a centralized controller and compensates for the undesired effects of unknown external disturbance and parameter uncertainties using the observer estimation results. Stability analysis shows that the closed-loop system states, such as the observer tracking error, and the position/velocity tracking errors, are finite-time stable. Simulation studies on a two ball-playing juggler robot with three degrees of freedom validate the theoretical results’ effectiveness

    Transparency in Port-Hamiltonian-Based Telemanipulation

    Get PDF
    After stability, transparency is the major issue in the design of a telemanipulation system. In this paper, we exploit the behavioral approach in order to provide an index for the evaluation of transparency in port-Hamiltonian-based teleoperators. Furthermore, we provide a transparency analysis of packet switching scattering-based communication channels

    Delay-dependent exponential stability of neutral stochastic delay systems (vol 54, pg 147, 2009)

    Get PDF
    In the above titled paper originally published in vol. 54, no. 1, pp. 147-152) of IEEE Transactions on Automatic Control, there were some typographical errors in inequalities. Corrections are presented here

    Exponential stability of a class of boundary control systems

    Get PDF
    We study a class of partial differential equations (with variable coefficients) on a one dimensional spatial domain with control and observation at the boundary. For this class of systems we provide simple tools to check exponential stability. This class is general enough to include models of flexible structures, traveling waves, heat exchangers, and bioreactors among others. The result is based on the use of a generating function (the energy for physical systems) and an inequality condition at the boundary. Furthermore, based on the port Hamiltonian approach, we give a constructive method to reduce this inequality to a simple matrix inequality

    Rapid Steady State Convergence for Quantum Systems Using Time-Delayed Feedback Control

    Get PDF
    We propose a time-delayed feedback control scheme for open quantum systems that can dramatically reduce the time to reach steady state. No measurement is performed in the feedback loop, and we suggest a simple all-optical implementation for a cavity QED system. We demonstrate the potential of the scheme by applying it to a driven and dissipative Dicke model, as recently realized in a quantum gas experiment. The time to reach steady state can then reduced by two orders of magnitude for parameters taken from experiment, making previously inaccessible long time attractors reachable within typical experimental run times. The scheme also offers the possibility of slowing down the dynamics, as well as qualitatively changing the phase diagram of the corresponding physical system.Comment: 25 pages, 9 figures. Invited paper in "Focus on Coherent Control of Complex Quantum Systems", Eds. B. Whaley and G. Milburn. PS: Preview on OSX struggles with opening some of the figures with a lot of data in the

    Wannier-Stark resonances in optical and semiconductor superlattices

    Get PDF
    In this work, we discuss the resonance states of a quantum particle in a periodic potential plus a static force. Originally this problem was formulated for a crystal electron subject to a static electric field and it is nowadays known as the Wannier-Stark problem. We describe a novel approach to the Wannier-Stark problem developed in recent years. This approach allows to compute the complex energy spectrum of a Wannier-Stark system as the poles of a rigorously constructed scattering matrix and solves the Wannier-Stark problem without any approximation. The suggested method is very efficient from the numerical point of view and has proven to be a powerful analytic tool for Wannier-Stark resonances appearing in different physical systems such as optical lattices or semiconductor superlattices.Comment: 94 pages, 41 figures, typos corrected, references adde

    Effects of time delay in feedback control of linear quantum systems

    Full text link
    We investigate feedback control of linear quantum systems subject to feedback-loop time delays. In particular, we examine the relation between the potentially achievable control performance and the time delays, and provide theoretical guidelines for the future experimental setup in two physical systems, which are typical in this research field. The evaluation criterion for the analysis is given by the optimal control performance formula, the derivation of which is from the classical control theoretic results about the input-output delay systems.Comment: 6 pages, 4 figure
    corecore