653 research outputs found

    Rooted Spiral Trees on Hyper-cubical lattices

    Full text link
    We study rooted spiral trees in 2,3 and 4 dimensions on a hyper cubical lattice using exact enumeration and Monte-Carlo techniques. On the square lattice, we also obtain exact lower bound of 1.93565 on the growth constant λ\lambda. Series expansions give θ=1.3667±0.001\theta=-1.3667\pm 0.001 and ν=1.3148±0.001\nu = 1.3148\pm0.001 on a square lattice. With Monte-Carlo simulations we get the estimates as θ=1.364±0.01\theta=-1.364\pm0.01, and ν=1.312±0.01\nu = 1.312\pm0.01. These results are numerical evidence against earlier proposed dimensional reduction by four in this problem. In dimensions higher than two, the spiral constraint can be implemented in two ways. In either case, our series expansion results do not support the proposed dimensional reduction.Comment: replaced with published versio

    Walks confined in a quadrant are not always D-finite

    Get PDF
    We consider planar lattice walks that start from a prescribed position, take their steps in a given finite subset of Z^2, and always stay in the quadrant x >= 0, y >= 0. We first give a criterion which guarantees that the length generating function of these walks is D-finite, that is, satisfies a linear differential equation with polynomial coefficients. This criterion applies, among others, to the ordinary square lattice walks. Then, we prove that walks that start from (1,1), take their steps in {(2,-1), (-1,2)} and stay in the first quadrant have a non-D-finite generating function. Our proof relies on a functional equation satisfied by this generating function, and on elementary complex analysis.Comment: To appear in Theoret. Comput. Sci. (special issue devoted to random generation of combinatorial objects and bijective combinatorics

    Winding of simple walks on the square lattice

    Full text link
    A method is described to count simple diagonal walks on Z2\mathbb{Z}^2 with a fixed starting point and endpoint on one of the axes and a fixed winding angle around the origin. The method involves the decomposition of such walks into smaller pieces, the generating functions of which are encoded in a commuting set of Hilbert space operators. The general enumeration problem is then solved by obtaining an explicit eigenvalue decomposition of these operators involving elliptic functions. By further restricting the intermediate winding angles of the walks to some open interval, the method can be used to count various classes of walks restricted to cones in Z2\mathbb{Z}^2 of opening angles that are integer multiples of π/4\pi/4. We present three applications of this main result. First we find an explicit generating function for the walks in such cones that start and end at the origin. In the particular case of a cone of angle 3π/43\pi/4 these walks are directly related to Gessel's walks in the quadrant, and we provide a new proof of their enumeration. Next we study the distribution of the winding angle of a simple random walk on Z2\mathbb{Z}^2 around a point in the close vicinity of its starting point, for which we identify discrete analogues of the known hyperbolic secant laws and a probabilistic interpretation of the Jacobi elliptic functions. Finally we relate the spectrum of one of the Hilbert space operators to the enumeration of closed loops in Z2\mathbb{Z}^2 with fixed winding number around the origin.Comment: 46 pages, 16 figures. Version accepted for publicatio

    Trees of self-avoiding walks

    Full text link
    We consider the biased random walk on a tree constructed from the set of finite self-avoiding walks on a lattice, and use it to construct probability measures on infinite self-avoiding walks. The limit measure (if it exists) obtained when the bias converges to its critical value is conjectured to coincide with the weak limit of the uniform SAW. Along the way, we obtain a criterion for the continuity of the escape probability of a biased random walk on a tree as a function of the bias, and show that the collection of escape probability functions for spherically symmetric trees of bounded degree is stable under uniform convergence

    Asymptotic Behavior of Inflated Lattice Polygons

    Full text link
    We study the inflated phase of two dimensional lattice polygons with fixed perimeter NN and variable area, associating a weight exp[pAJb]\exp[pA - Jb ] to a polygon with area AA and bb bends. For convex and column-convex polygons, we show that /Amax=1K(J)/p~2+O(ρp~)/A_{max} = 1 - K(J)/\tilde{p}^2 + \mathcal{O}(\rho^{-\tilde{p}}), where p~=pN1\tilde{p}=pN \gg 1, and ρ<1\rho<1. The constant K(J)K(J) is found to be the same for both types of polygons. We argue that self-avoiding polygons should exhibit the same asymptotic behavior. For self-avoiding polygons, our predictions are in good agreement with exact enumeration data for J=0 and Monte Carlo simulations for J0J \neq 0. We also study polygons where self-intersections are allowed, verifying numerically that the asymptotic behavior described above continues to hold.Comment: 7 page

    Conformal Invariance and Stochastic Loewner Evolution Predictions for the 2D Self-Avoiding Walk - Monte Carlo Tests

    Full text link
    Simulations of the self-avoiding walk (SAW) are performed in a half-plane and a cut-plane (the complex plane with the positive real axis removed) using the pivot algorithm. We test the conjecture of Lawler, Schramm and Werner that the scaling limit of the two-dimensional SAW is given by Schramm's Stochastic Loewner Evolution (SLE). The agreement is found to be excellent. The simulations also test the conformal invariance of the SAW since conformal invariance would imply that if we map the walks in the cut-plane into the half plane using the conformal map z -> sqrt(z), then the resulting walks will have the same distribution as the SAW in the half plane. The simulations show excellent agreement between the distributions.Comment: Second version added more simulations and a proof of irreducibility. 25 pages, 16 figure
    corecore