1,018,884 research outputs found
Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary
A 1D analytical framework is implemented in a narrow convergent estuary that is 78 km in length (the Guadiana, Southern Iberia) to evaluate the tidal dynamics along the channel, including the effects of neap-spring amplitude variations at the mouth. The close match between the observations (damping from the mouth to ∼ 30 km, shoaling upstream) and outputs from semi-closed channel solutions indicates that the M2 tide is reflected at the estuary head. The model is used to determine the contribution of reflection to the dynamics of the propagating wave. This contribution is mainly confined to the upper one third of the estuary. The relatively constant mean wave height along the channel (< 10% variations) partly results from reflection effects that also modify significantly the wave celerity and the phase difference between tidal velocity and elevation (contradicting the definition of an “ideal” estuary). Furthermore, from the mouth to ∼ 50 km, the variable friction experienced by the incident wave at neap and spring tides produces wave shoaling and damping, respectively. As a result, the wave celerity is largest at neap tide along this lower reach, although the mean water level is highest in spring. Overall, the presented analytical framework is useful for describing the main tidal properties along estuaries considering various forcings (amplitude, period) at the estuary mouth and the proposed method could be applicable to other estuaries with small tidal amplitude to depth ratio and negligible river discharge.info:eu-repo/semantics/publishedVersio
Towards a Soil Information System with quantified accuracy : a prototype for mapping continuous soil properties
This report describes the potential and functionality of software for spatial analysis, prediction and stochastic simulation of continuous soil properties using data from the Dutch Soil Information System (BIS). A geostatistical framework and R codes were developed. The geostatistical model of a soil property has a deterministic component representing the mean value within a soil category, and a stochastic component of standardized residuals. The standardized residuals are interpolated or simulated based on the simple kriging system. The software was tested in four case studies: exchangeable soil pH, clay content, organic matter content and Mean Spring Water table depth (MSW). It is concluded that the geostatistical framework and R codes developed in this study enable to predict values of continuous soil properties spatially, and to quantify the inaccuracy of these predictions. The inaccuracy of a spatial prediction at a certain location is quantified by the kriging variance, which can be interpreted as an indication of the uncertainty about the true value
Describability via ubiquity and eutaxy in Diophantine approximation
We present a comprehensive framework for the study of the size and large
intersection properties of sets of limsup type that arise naturally in
Diophantine approximation and multifractal analysis. This setting encompasses
the classical ubiquity techniques, as well as the mass and the large
intersection transference principles, thereby leading to a thorough description
of the properties in terms of Hausdorff measures and large intersection classes
associated with general gauge functions. The sets issued from eutaxic sequences
of points and optimal regular systems may naturally be described within this
framework. The discussed applications include the classical homogeneous and
inhomogeneous approximation, the approximation by algebraic numbers, the
approximation by fractional parts, the study of uniform and Poisson random
coverings, and the multifractal analysis of L{\'e}vy processes.Comment: 94 pages. Notes based on lectures given during the 2012 Program on
Stochastics, Dimension and Dynamics at Morningside Center of Mathematics, the
2013 Arithmetic Geometry Year at Poncelet Laboratory, and the 2014 Spring
School in Analysis held at Universite Blaise Pasca
Renewing the framework for secondary science : spring 2008 subject leader development meeting : sessions 2, 3 and 4
Comparative analysis of spring flood risk reduction measures in Alaska, United States and the Sakha Republic, Russia
Thesis (Ph.D.) University of Alaska Fairbanks, 2017River ice thaw and breakup are an annual springtime phenomena in the North. Depending on regional weather patterns and river morphology, breakups can result in catastrophic floods in exposed and vulnerable communities. Breakup flood risk is especially high in rural and remote northern communities, where flood relief and recovery are complicated by unique geographical and climatological features, and limited physical and communication infrastructure. Proactive spring flood management would significantly minimize the adverse impacts of spring floods. Proactive flood management entails flood risk reduction through advances in ice jam and flood prevention, forecasting and mitigation, and community preparedness. With the goal to identify best practices in spring flood risk reduction, I conducted a comparative case study between two flood-prone communities, Galena in Alaska, United States and Edeytsy in the Sakha Republic, Russia. Within a week from each other, Galena and Edeytsy sustained major floods in May 2013. Methods included focus groups with the representatives from flood managing agencies, surveys of families impacted by the 2013 floods, observations on site, and archival review. Comparative parameters of the study included natural and human causes of spring floods, effectiveness of spring flood mitigation and preparedness strategies, and the role of interagency communication and cooperation in flood risk reduction. The analysis revealed that spring flood risk in Galena and Edeytsy results from complex interactions among a series of natural processes and human actions that generate conditions of hazard, exposure, and vulnerability. Therefore, flood risk in Galena and Edeytsy can be reduced by managing conditions of ice-jam floods, and decreasing exposure and vulnerability of the at-risk populations. Implementing the Pressure and Release model to analyze the vulnerability progression of Edeytsy and Galena points to common root causes at the two research sites, including colonial heritage, unequal distribution of resources and power, top-down governance, and limited inclusion of local communities in the decision-making process. To construct an appropriate flood risk reduction framework it is important to establish a dialogue among the diverse stakeholders on potential solutions, arriving at a range of top-down and bottom-up initiatives and in conjunction selecting the appropriate strategies. Both communities have progressed in terms of greater awareness of the hazard, reduction in vulnerabilities, and a shift to more reliance on shelter-in-place. However, in neither community have needed improvements in levee protection been completed. Dialogue between outside authorities and the community begins earlier and is more intensive for Edeytsy, perhaps accounting for Edeytsy's more favorable rating of risk management and response than Galena's
Tests of mode coupling theory in a simple model for two-component miscible polymer blends
We present molecular dynamics simulations on the structural relaxation of a
simple bead-spring model for polymer blends. The introduction of a different
monomer size induces a large time scale separation for the dynamics of the two
components. Simulation results for a large set of observables probing density
correlations, Rouse modes, and orientations of bond and chain end-to-end
vectors, are analyzed within the framework of the Mode Coupling Theory (MCT).
An unusually large value of the exponent parameter is obtained. This feature
suggests the possibility of an underlying higher-order MCT scenario for dynamic
arrest.Comment: Revised version. Additional figures and citation
- …
