227 research outputs found

    A Comprehensive Survey on the Cyber-Security of Smart Grids: Cyber-Attacks, Detection, Countermeasure Techniques, and Future Directions

    Full text link
    One of the significant challenges that smart grid networks face is cyber-security. Several studies have been conducted to highlight those security challenges. However, the majority of these surveys classify attacks based on the security requirements, confidentiality, integrity, and availability, without taking into consideration the accountability requirement. In addition, some of these surveys focused on the Transmission Control Protocol/Internet Protocol (TCP/IP) model, which does not differentiate between the application, session, and presentation and the data link and physical layers of the Open System Interconnection (OSI) model. In this survey paper, we provide a classification of attacks based on the OSI model and discuss in more detail the cyber-attacks that can target the different layers of smart grid networks communication. We also propose new classifications for the detection and countermeasure techniques and describe existing techniques under each category. Finally, we discuss challenges and future research directions

    Security Aspects of Internet of Things aided Smart Grids: a Bibliometric Survey

    Full text link
    The integration of sensors and communication technology in power systems, known as the smart grid, is an emerging topic in science and technology. One of the critical issues in the smart grid is its increased vulnerability to cyber threats. As such, various types of threats and defense mechanisms are proposed in literature. This paper offers a bibliometric survey of research papers focused on the security aspects of Internet of Things (IoT) aided smart grids. To the best of the authors' knowledge, this is the very first bibliometric survey paper in this specific field. A bibliometric analysis of all journal articles is performed and the findings are sorted by dates, authorship, and key concepts. Furthermore, this paper also summarizes the types of cyber threats facing the smart grid, the various security mechanisms proposed in literature, as well as the research gaps in the field of smart grid security.Comment: The paper is published in Elsevier's Internet of Things journal. 25 pages + 20 pages of reference

    Performance Analysis Of Data-Driven Algorithms In Detecting Intrusions On Smart Grid

    Get PDF
    The traditional power grid is no longer a practical solution for power delivery due to several shortcomings, including chronic blackouts, energy storage issues, high cost of assets, and high carbon emissions. Therefore, there is a serious need for better, cheaper, and cleaner power grid technology that addresses the limitations of traditional power grids. A smart grid is a holistic solution to these issues that consists of a variety of operations and energy measures. This technology can deliver energy to end-users through a two-way flow of communication. It is expected to generate reliable, efficient, and clean power by integrating multiple technologies. It promises reliability, improved functionality, and economical means of power transmission and distribution. This technology also decreases greenhouse emissions by transferring clean, affordable, and efficient energy to users. Smart grid provides several benefits, such as increasing grid resilience, self-healing, and improving system performance. Despite these benefits, this network has been the target of a number of cyber-attacks that violate the availability, integrity, confidentiality, and accountability of the network. For instance, in 2021, a cyber-attack targeted a U.S. power system that shut down the power grid, leaving approximately 100,000 people without power. Another threat on U.S. Smart Grids happened in March 2018 which targeted multiple nuclear power plants and water equipment. These instances represent the obvious reasons why a high level of security approaches is needed in Smart Grids to detect and mitigate sophisticated cyber-attacks. For this purpose, the US National Electric Sector Cybersecurity Organization and the Department of Energy have joined their efforts with other federal agencies, including the Cybersecurity for Energy Delivery Systems and the Federal Energy Regulatory Commission, to investigate the security risks of smart grid networks. Their investigation shows that smart grid requires reliable solutions to defend and prevent cyber-attacks and vulnerability issues. This investigation also shows that with the emerging technologies, including 5G and 6G, smart grid may become more vulnerable to multistage cyber-attacks. A number of studies have been done to identify, detect, and investigate the vulnerabilities of smart grid networks. However, the existing techniques have fundamental limitations, such as low detection rates, high rates of false positives, high rates of misdetection, data poisoning, data quality and processing, lack of scalability, and issues regarding handling huge volumes of data. Therefore, these techniques cannot ensure safe, efficient, and dependable communication for smart grid networks. Therefore, the goal of this dissertation is to investigate the efficiency of machine learning in detecting cyber-attacks on smart grids. The proposed methods are based on supervised, unsupervised machine and deep learning, reinforcement learning, and online learning models. These models have to be trained, tested, and validated, using a reliable dataset. In this dissertation, CICDDoS 2019 was used to train, test, and validate the efficiency of the proposed models. The results show that, for supervised machine learning models, the ensemble models outperform other traditional models. Among the deep learning models, densely neural network family provides satisfactory results for detecting and classifying intrusions on smart grid. Among unsupervised models, variational auto-encoder, provides the highest performance compared to the other unsupervised models. In reinforcement learning, the proposed Capsule Q-learning provides higher detection and lower misdetection rates, compared to the other model in literature. In online learning, the Online Sequential Euclidean Distance Routing Capsule Network model provides significantly better results in detecting intrusion attacks on smart grid, compared to the other deep online models

    Primary User Emulation Attacks: A Detection Technique Based on Kalman Filter

    Full text link
    Cognitive radio technology addresses the problem of spectrum scarcity by allowing secondary users to use the vacant spectrum bands without causing interference to the primary users. However, several attacks could disturb the normal functioning of the cognitive radio network. Primary user emulation attacks are one of the most severe attacks in which a malicious user emulates the primary user signal characteristics to either prevent other legitimate secondary users from accessing the idle channels or causing harmful interference to the primary users. There are several proposed approaches to detect the primary user emulation attackers. However, most of these techniques assume that the primary user location is fixed, which does not make them valid when the primary user is mobile. In this paper, we propose a new approach based on the Kalman filter framework for detecting the primary user emulation attacks with a non-stationary primary user. Several experiments have been conducted and the advantages of the proposed approach are demonstrated through the simulation results.Comment: 14 pages, 9 figure

    CPS Attacks Mitigation Approaches on Power Electronic Systems with Security Challenges for Smart Grid Applications: A Review

    Get PDF
    This paper presents an inclusive review of the cyber-physical (CP) attacks, vulnerabilities, mitigation approaches on the power electronics and the security challenges for the smart grid applications. With the rapid evolution of the physical systems in the power electronics applications for interfacing renewable energy sources that incorporate with cyber frameworks, the cyber threats have a critical impact on the smart grid performance. Due to the existence of electronic devices in the smart grid applications, which are interconnected through communication networks, these networks may be subjected to severe cyber-attacks by hackers. If this occurs, the digital controllers can be physically isolated from the control loop. Therefore, the cyber-physical systems (CPSs) in the power electronic systems employed in the smart grid need special treatment and security. In this paper, an overview of the power electronics systems security on the networked smart grid from the CP perception, as well as then emphases on prominent CP attack patterns with substantial influence on the power electronics components operation along with analogous defense solutions. Furthermore, appraisal of the CPS threats attacks mitigation approaches, and encounters along the smart grid applications are discussed. Finally, the paper concludes with upcoming trends and challenges in CP security in the smart grid applications
    corecore