222 research outputs found

    Deep Learning for Face Anti-Spoofing: A Survey

    Full text link
    Face anti-spoofing (FAS) has lately attracted increasing attention due to its vital role in securing face recognition systems from presentation attacks (PAs). As more and more realistic PAs with novel types spring up, traditional FAS methods based on handcrafted features become unreliable due to their limited representation capacity. With the emergence of large-scale academic datasets in the recent decade, deep learning based FAS achieves remarkable performance and dominates this area. However, existing reviews in this field mainly focus on the handcrafted features, which are outdated and uninspiring for the progress of FAS community. In this paper, to stimulate future research, we present the first comprehensive review of recent advances in deep learning based FAS. It covers several novel and insightful components: 1) besides supervision with binary label (e.g., '0' for bonafide vs. '1' for PAs), we also investigate recent methods with pixel-wise supervision (e.g., pseudo depth map); 2) in addition to traditional intra-dataset evaluation, we collect and analyze the latest methods specially designed for domain generalization and open-set FAS; and 3) besides commercial RGB camera, we summarize the deep learning applications under multi-modal (e.g., depth and infrared) or specialized (e.g., light field and flash) sensors. We conclude this survey by emphasizing current open issues and highlighting potential prospects.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    FLIP: Cross-domain Face Anti-spoofing with Language Guidance

    Full text link
    Face anti-spoofing (FAS) or presentation attack detection is an essential component of face recognition systems deployed in security-critical applications. Existing FAS methods have poor generalizability to unseen spoof types, camera sensors, and environmental conditions. Recently, vision transformer (ViT) models have been shown to be effective for the FAS task due to their ability to capture long-range dependencies among image patches. However, adaptive modules or auxiliary loss functions are often required to adapt pre-trained ViT weights learned on large-scale datasets such as ImageNet. In this work, we first show that initializing ViTs with multimodal (e.g., CLIP) pre-trained weights improves generalizability for the FAS task, which is in line with the zero-shot transfer capabilities of vision-language pre-trained (VLP) models. We then propose a novel approach for robust cross-domain FAS by grounding visual representations with the help of natural language. Specifically, we show that aligning the image representation with an ensemble of class descriptions (based on natural language semantics) improves FAS generalizability in low-data regimes. Finally, we propose a multimodal contrastive learning strategy to boost feature generalization further and bridge the gap between source and target domains. Extensive experiments on three standard protocols demonstrate that our method significantly outperforms the state-of-the-art methods, achieving better zero-shot transfer performance than five-shot transfer of adaptive ViTs. Code: https://github.com/koushiksrivats/FLIPComment: Accepted to ICCV-2023. Project Page: https://koushiksrivats.github.io/FLIP

    Semi-Supervised learning for Face Anti-Spoofing using Apex frame

    Full text link
    Conventional feature extraction techniques in the face anti-spoofing domain either analyze the entire video sequence or focus on a specific segment to improve model performance. However, identifying the optimal frames that provide the most valuable input for the face anti-spoofing remains a challenging task. In this paper, we address this challenge by employing Gaussian weighting to create apex frames for videos. Specifically, an apex frame is derived from a video by computing a weighted sum of its frames, where the weights are determined using a Gaussian distribution centered around the video's central frame. Furthermore, we explore various temporal lengths to produce multiple unlabeled apex frames using a Gaussian function, without the need for convolution. By doing so, we leverage the benefits of semi-supervised learning, which considers both labeled and unlabeled apex frames to effectively discriminate between live and spoof classes. Our key contribution emphasizes the apex frame's capacity to represent the most significant moments in the video, while unlabeled apex frames facilitate efficient semi-supervised learning, as they enable the model to learn from videos of varying temporal lengths. Experimental results using four face anti-spoofing databases: CASIA, REPLAY-ATTACK, OULU-NPU, and MSU-MFSD demonstrate the apex frame's efficacy in advancing face anti-spoofing techniques

    Taming Self-Supervised Learning for Presentation Attack Detection: De-Folding and De-Mixing

    Full text link
    Biometric systems are vulnerable to Presentation Attacks (PA) performed using various Presentation Attack Instruments (PAIs). Even though there are numerous Presentation Attack Detection (PAD) techniques based on both deep learning and hand-crafted features, the generalization of PAD for unknown PAI is still a challenging problem. In this work, we empirically prove that the initialization of the PAD model is a crucial factor for the generalization, which is rarely discussed in the community. Based on such observation, we proposed a self-supervised learning-based method, denoted as DF-DM. Specifically, DF-DM is based on a global-local view coupled with De-Folding and De-Mixing to derive the task-specific representation for PAD. During De-Folding, the proposed technique will learn region-specific features to represent samples in a local pattern by explicitly minimizing generative loss. While De-Mixing drives detectors to obtain the instance-specific features with global information for more comprehensive representation by minimizing interpolation-based consistency. Extensive experimental results show that the proposed method can achieve significant improvements in terms of both face and fingerprint PAD in more complicated and hybrid datasets when compared with state-of-the-art methods. When training in CASIA-FASD and Idiap Replay-Attack, the proposed method can achieve an 18.60% Equal Error Rate (EER) in OULU-NPU and MSU-MFSD, exceeding baseline performance by 9.54%. The source code of the proposed technique is available at https://github.com/kongzhecn/dfdm.Comment: Accepted by IEEE Transactions on Neural Networks and Learning Systems (TNNLS

    Unmasking the imposters: towards improving the generalisation of deep learning methods for face presentation attack detection.

    Get PDF
    Identity theft has had a detrimental impact on the reliability of face recognition, which has been extensively employed in security applications. The most prevalent are presentation attacks. By using a photo, video, or mask of an authorized user, attackers can bypass face recognition systems. Fake presentation attacks are detected by the camera sensors of face recognition systems using face presentation attack detection. Presentation attacks can be detected using convolutional neural networks, commonly used in computer vision applications. An in-depth analysis of current deep learning methods is used in this research to examine various aspects of detecting face presentation attacks. A number of new techniques are implemented and evaluated in this study, including pre-trained models, manual feature extraction, and data aggregation. The thesis explores the effectiveness of various machine learning and deep learning models in improving detection performance by using publicly available datasets with different dataset partitions than those specified in the official dataset protocol. Furthermore, the research investigates how deep models and data aggregation can be used to detect face presentation attacks, as well as a novel approach that combines manual features with deep features in order to improve detection accuracy. Moreover, task-specific features are also extracted using pre-trained deep models to enhance the performance of detection and generalisation further. This problem is motivated by the need to achieve generalization against new and rapidly evolving attack variants. It is possible to extract identifiable features from presentation attack variants in order to detect them. However, new methods are needed to deal with emerging attacks and improve the generalization capability. This thesis examines the necessary measures to detect face presentation attacks in a more robust and generalised manner

    Domain Generalization via Ensemble Stacking for Face Presentation Attack Detection

    Full text link
    Face Presentation Attack Detection (PAD) plays a pivotal role in securing face recognition systems against spoofing attacks. Although great progress has been made in designing face PAD methods, developing a model that can generalize well to unseen test domains remains a significant challenge. Moreover, due to different types of spoofing attacks, creating a dataset with a sufficient number of samples for training deep neural networks is a laborious task. This work proposes a comprehensive solution that combines synthetic data generation and deep ensemble learning to enhance the generalization capabilities of face PAD. Specifically, synthetic data is generated by blending a static image with spatiotemporal encoded images using alpha composition and video distillation. This way, we simulate motion blur with varying alpha values, thereby generating diverse subsets of synthetic data that contribute to a more enriched training set. Furthermore, multiple base models are trained on each subset of synthetic data using stacked ensemble learning. This allows the models to learn complementary features and representations from different synthetic subsets. The meta-features generated by the base models are used as input to a new model called the meta-model. The latter combines the predictions from the base models, leveraging their complementary information to better handle unseen target domains and enhance the overall performance. Experimental results on four datasets demonstrate low half total error rates (HTERs) on three benchmark datasets: CASIA-MFSD (8.92%), MSU-MFSD (4.81%), and OULU-NPU (6.70%). The approach shows potential for advancing presentation attack detection by utilizing large-scale synthetic data and the meta-model
    • …
    corecore