3,626 research outputs found

    Approximation and geometric modeling with simplex B-splines associated with irregular triangles

    Get PDF
    Bivariate quadratic simplical B-splines defined by their corresponding set of knots derived from a (suboptimal) constrained Delaunay triangulation of the domain are employed to obtain a C1-smooth surface. The generation of triangle vertices is adjusted to the areal distribution of the data in the domain. We emphasize here that the vertices of the triangles initially define the knots of the B-splines and do generally not coincide with the abscissae of the data. Thus, this approach is well suited to process scattered data.\ud \ud With each vertex of a given triangle we associate two additional points which give rise to six configurations of five knots defining six linearly independent bivariate quadratic B-splines supported on the convex hull of the corresponding five knots.\ud \ud If we consider the vertices of the triangulation as threefold knots, the bivariate quadratic B-splines turn into the well known bivariate quadratic Bernstein-BĂ©zier-form polynomials on triangles. Thus we might be led to think of B-splines as of smoothed versions of Bernstein-BĂ©zier polynomials with respect to the entire domain. From the degenerate Bernstein-BĂ©zier situation we deduce rules how to locate the additional points associated with each vertex to establish knot configurations that allow the modeling of discontinuities of the function itself or any of its directional derivatives. We find that four collinear knots out of the set of five defining an individual quadratic B-spline generate a discontinuity in the surface along the line they constitute, and that analogously three collinear knots generate a discontinuity in a first derivative.\ud Finally, the coefficients of the linear combinations of normalized simplicial B-splines are visualized as geometric control points satisfying the convex hull property.\ud Thus, bivariate quadratic B-splines associated with irregular triangles provide a great flexibility to approximate and model fast changing or even functions with any given discontinuities from scattered data.\ud An example for least squares approximation with simplex splines is presented

    Component Selection in the Additive Regression Model

    Full text link
    Similar to variable selection in the linear regression model, selecting significant components in the popular additive regression model is of great interest. However, such components are unknown smooth functions of independent variables, which are unobservable. As such, some approximation is needed. In this paper, we suggest a combination of penalized regression spline approximation and group variable selection, called the lasso-type spline method (LSM), to handle this component selection problem with a diverging number of strongly correlated variables in each group. It is shown that the proposed method can select significant components and estimate nonparametric additive function components simultaneously with an optimal convergence rate simultaneously. To make the LSM stable in computation and able to adapt its estimators to the level of smoothness of the component functions, weighted power spline bases and projected weighted power spline bases are proposed. Their performance is examined by simulation studies across two set-ups with independent predictors and correlated predictors, respectively, and appears superior to the performance of competing methods. The proposed method is extended to a partial linear regression model analysis with real data, and gives reliable results

    Construction of analysis-suitable G1G^1 planar multi-patch parameterizations

    Full text link
    Isogeometric analysis allows to define shape functions of global C1C^{1} continuity (or of higher continuity) over multi-patch geometries. The construction of such C1C^{1}-smooth isogeometric functions is a non-trivial task and requires particular multi-patch parameterizations, so-called analysis-suitable G1G^{1} (in short, AS-G1G^{1}) parameterizations, to ensure that the resulting C1C^{1} isogeometric spaces possess optimal approximation properties, cf. [7]. In this work, we show through examples that it is possible to construct AS-G1G^{1} multi-patch parameterizations of planar domains, given their boundary. More precisely, given a generic multi-patch geometry, we generate an AS-G1G^{1} multi-patch parameterization possessing the same boundary, the same vertices and the same first derivatives at the vertices, and which is as close as possible to this initial geometry. Our algorithm is based on a quadratic optimization problem with linear side constraints. Numerical tests also confirm that C1C^{1} isogeometric spaces over AS-G1G^{1} multi-patch parameterized domains converge optimally under mesh refinement, while for generic parameterizations the convergence order is severely reduced

    Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion

    Full text link
    We present a class of spline finite element methods for time-domain wave propagation which are particularly amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the mass matrix inverse. This approximation restores a tensor product structure while retaining provable high order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than equivalent piecewise continuous or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot positions. Numerical experiments confirm the accuracy and stability of the proposed methods
    • …
    corecore