166,656 research outputs found

    Examination of the Circle Spline Routine

    Get PDF
    The Circle Spline routine is currently being used for generating both two and three dimensional spline curves. It was developed for use in ESCHER, a mesh generating routine written to provide a computationally simple and efficient method for building meshes along curved surfaces. Circle Spline is a parametric linear blending spline. Because many computerized machining operations involve circular shapes, the Circle Spline is well suited for both the design and manufacturing processes and shows promise as an alternative to the spline methods currently supported by the Initial Graphics Specification (IGES)

    Adaptive Smoothing for Trajectory Reconstruction

    Full text link
    Trajectory reconstruction is the process of inferring the path of a moving object between successive observations. In this paper, we propose a smoothing spline -- which we name the V-spline -- that incorporates position and velocity information and a penalty term that controls acceleration. We introduce a particular adaptive V-spline designed to control the impact of irregularly sampled observations and noisy velocity measurements. A cross-validation scheme for estimating the V-spline parameters is given and we detail the performance of the V-spline on four particularly challenging test datasets. Finally, an application of the V-spline to vehicle trajectory reconstruction in two dimensions is given, in which the penalty term is allowed to further depend on known operational characteristics of the vehicle.Comment: 25 pages, submitte

    Multilevel refinable triangular PSP-splines (Tri-PSPS)

    Get PDF
    A multi-level spline technique known as partial shape preserving splines (PSPS) (Li and Tian, 2011) has recently been developed for the design of piecewise polynomial freeform geometric surfaces, where the basis functions of the PSPS can be directly built from an arbitrary set of polygons that partitions a giving parametric domain. This paper addresses a special type of PSPS, the triangular PSPS (Tri-PSPS), where all spline basis functions are constructed from a set of triangles. Compared with other triangular spline techniques, Tri-PSPS have several distinctive features. Firstly, for each given triangle, the corresponding spline basis function for any required degree of smoothness can be expressed in closed-form and directly written out in full explicitly as piecewise bivariate polynomials. Secondly, Tri-PSPS are an additive triangular spline technique, where the spline function built from a given triangle can be replaced with a set of refined spline functions built on a set of smaller triangles that partition the initial given triangle. In addition, Tri-PSPS are a multilevel spline technique, Tri-PSPS surfaces can be designed to have a continuously varying levels of detail, achieved simply by specifying a proper value for the smoothing parameter introduced in the spline functions. In terms of practical implementation, Tri-PSPS are a parallel computing friendly spline scheme, which can be easily implemented on modern programmable GPUs or on high performance computer clusters, since each of the basis functions of Tri-PSPS can be directly computed independent of each other in parallel

    Shape Preserving Spline Interpolation

    Get PDF
    A rational spline solution to the problem of shape preserving interpolation is discussed. The rational spline is represented in terms of first derivative values at the knots and provides an alternative to the spline-under-tension. The idea of making the shape control parameters dependent on the first derivative unknowns is then explored. The monotonic or convex shape of the interpolation data can then be preserved automatically through the solution of the resulting non-linear consistency equations of the spline
    corecore