5 research outputs found

    Detecting splicing and copy-move attacks in color images

    Get PDF
    Image sensors are generating limitless digital images every day. Image forgery like splicing and copy-move are very common type of attacks that are easy to execute using sophisticated photo editing tools. As a result, digital forensics has attracted much attention to identify such tampering on digital images. In this paper, a passive (blind) image tampering identification method based on Discrete Cosine Transformation (DCT) and Local Binary Pattern (LBP) has been proposed. First, the chroma components of an image is divided into fixed sized non-overlapping blocks and 2D block DCT is applied to identify the changes due to forgery in local frequency distribution of the image. Then a texture descriptor, LBP is applied on the magnitude component of the 2D-DCT array to enhance the artifacts introduced by the tampering operation. The resulting LBP image is again divided into non-overlapping blocks. Finally, summations of corresponding inter-cell values of all the LBP blocks are computed and arranged as a feature vector. These features are fed into a Support Vector Machine (SVM) with Radial Basis Function (RBF) as kernel to distinguish forged images from authentic ones. The proposed method has been experimented extensively on three publicly available well-known image splicing and copy-move detection benchmark datasets of color images. Results demonstrate the superiority of the proposed method over recently proposed state-of-the-art approaches in terms of well accepted performance metrics such as accuracy, area under ROC curve and others.2018 International Conference on Digital Image Computing: Techniques and Applications, DICTA 201

    Image splicing detection scheme using adaptive threshold mean ternary pattern descriptor

    Get PDF
    The rapid growth of image editing applications has an impact on image forgery cases. Image forgery is a big challenge in authentic image identification. Images can be readily altered using post-processing effects, such as blurring shallow depth, JPEG compression, homogenous regions, and noise to forge the image. Besides, the process can be applied in the spliced image to produce a composite image. Thus, there is a need to develop a scheme of image forgery detection for image splicing. In this research, suitable features of the descriptors for the detection of spliced forgery are defined. These features will reduce the impact of blurring shallow depth, homogenous area, and noise attacks to improve the accuracy. Therefore, a technique to detect forgery at the image level of the image splicing was designed and developed. At this level, the technique involves four important steps. Firstly, convert colour image to three colour channels followed by partition of image into overlapping block and each block is partitioned into non-overlapping cells. Next, Adaptive Thresholding Mean Ternary Pattern Descriptor (ATMTP) is applied on each cell to produce six ATMTP codes and finally, the tested image is classified. In the next part of the scheme, detected forgery object in the spliced image involves five major steps. Initially, similarity among every neighbouring district is computed and the two most comparable areas are assembled together to the point that the entire picture turns into a single area. Secondly, merge similar regions according to specific state, which satisfies the condition of fewer than four pixels between similar regions that lead to obtaining the desired regions to represent objects that exist in the spliced image. Thirdly, select random blocks from the edge of the binary image based on the binary mask. Fourthly, for each block, the Gabor Filter feature is extracted to assess the edges extracted of the segmented image. Finally, the Support Vector Machine (SVM) is used to classify the images. Evaluation of the scheme was experimented using three sets of standard datasets, namely, the Institute of Automation, Chinese Academy of Sciences (CASIA) version TIDE 1.0 and 2.0, and Columbia University. The results showed that, the ATMTP achieved higher accuracy of 98.95%, 99.03% and 99.17% respectively for each set of datasets. Therefore, the findings of this research has proven the significant contribution of the scheme in improving image forgery detection. It is recommended that the scheme be further improved in the future by considering geometrical perspective

    Autenticación de imágenes digitales mediante patrones locales de texturas

    Get PDF
    La autenticidad de una imagen digital sufre graves amenazas debido a la existencia de poderosas herramientas para la edición de imágenes digitales que facilitan la modificación del contenido de las mismas sin dejar huellas visibles de tales cambios. Este problema unido a la facilidad de distribución de la información a través de plataformas digitales como blogs, Internet o redes sociales, ha provocado que la sociedad tienda a aceptar como cierto todo lo que ve sin cuestionar su veracidad. En este trabajo se propone un método de autenticación de imágenes digitales mediante el análisis de patrones locales de textura. El sistema propuesto combina el patrón binario local con la transformada discreta wavelet y la transformada discreta del coseno para extraer las características de cada uno de los bloques de la imagen investigada. Posteriormente, se utiliza la máquina de soporte vectorial para crear el modelo que permita la verificación de la autenticidad de una imagen. Para la evaluación del método propuesto se realizaron experimentos con bases de datos públicas de imágenes falsificadas que son ampliamente utilizadas en la literatura

    Splicing image forgery detection based on DCT and Local Binary Pattern

    No full text

    Measuring trustworthiness of image data in the internet of things environment

    Get PDF
    Internet of Things (IoT) image sensors generate huge volumes of digital images every day. However, easy availability and usability of photo editing tools, the vulnerability in communication channels and malicious software have made forgery attacks on image sensor data effortless and thus expose IoT systems to cyberattacks. In IoT applications such as smart cities and surveillance systems, the smooth operation depends on sensors’ sharing data with other sensors of identical or different types. Therefore, a sensor must be able to rely on the data it receives from other sensors; in other words, data must be trustworthy. Sensors deployed in IoT applications are usually limited to low processing and battery power, which prohibits the use of complex cryptography and security mechanism and the adoption of universal security standards by IoT device manufacturers. Hence, estimating the trust of the image sensor data is a defensive solution as these data are used for critical decision-making processes. To our knowledge, only one published work has estimated the trustworthiness of digital images applied to forensic applications. However, that study’s method depends on machine learning prediction scores returned by existing forensic models, which limits its usage where underlying forensics models require different approaches (e.g., machine learning predictions, statistical methods, digital signature, perceptual image hash). Multi-type sensor data correlation and context awareness can improve the trust measurement, which is absent in that study’s model. To address these issues, novel techniques are introduced to accurately estimate the trustworthiness of IoT image sensor data with the aid of complementary non-imagery (numeric) data-generating sensors monitoring the same environment. The trust estimation models run in edge devices, relieving sensors from computationally intensive tasks. First, to detect local image forgery (splicing and copy-move attacks), an innovative image forgery detection method is proposed based on Discrete Cosine Transformation (DCT), Local Binary Pattern (LBP) and a new feature extraction method using the mean operator. Using Support Vector Machine (SVM), the proposed method is extensively tested on four well-known publicly available greyscale and colour image forgery datasets and on an IoT-based image forgery dataset that we built. Experimental results reveal the superiority of our proposed method over recent state-of-the-art methods in terms of widely used performance metrics and computational time and demonstrate robustness against low availability of forged training samples. Second, a robust trust estimation framework for IoT image data is proposed, leveraging numeric data-generating sensors deployed in the same area of interest (AoI) in an indoor environment. As low-cost sensors allow many IoT applications to use multiple types of sensors to observe the same AoI, the complementary numeric data of one sensor can be exploited to measure the trust value of another image sensor’s data. A theoretical model is developed using Shannon’s entropy to derive the uncertainty associated with an observed event and Dempster-Shafer theory (DST) for decision fusion. The proposed model’s efficacy in estimating the trust score of image sensor data is analysed by observing a fire event using IoT image and temperature sensor data in an indoor residential setup under different scenarios. The proposed model produces highly accurate trust scores in all scenarios with authentic and forged image data. Finally, as the outdoor environment varies dynamically due to different natural factors (e.g., lighting condition variations in day and night, presence of different objects, smoke, fog, rain, shadow in the scene), a novel trust framework is proposed that is suitable for the outdoor environments with these contextual variations. A transfer learning approach is adopted to derive the decision about an observation from image sensor data, while also a statistical approach is used to derive the decision about the same observation from numeric data generated from other sensors deployed in the same AoI. These decisions are then fused using CertainLogic and compared with DST-based fusion. A testbed was set up using Raspberry Pi microprocessor, image sensor, temperature sensor, edge device, LoRa nodes, LoRaWAN gateway and servers to evaluate the proposed techniques. The results show that CertainLogic is more suitable for measuring the trustworthiness of image sensor data in an outdoor environment.Doctor of Philosoph
    corecore