503 research outputs found

    Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the Small Magellanic Cloud

    Full text link
    We report on the long-term average spin period, rate of change of spin period and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the Small Magellanic Cloud. We also collect and calculate parameters of each system and use these data to determine that all systems contain a neutron star which is accreting via a disc, rather than a wind, and that if these neutron stars are near spin equilibrium, then over half of them, including all with spin periods over about 100 s, have magnetic fields over the quantum critical level of 4.4x10^13 G. If these neutron stars are not close to spin equilibrium, then their magnetic fields are inferred to be much lower, of the order of 10^6-10^10 G, comparable to the fields of neutron stars in low-mass X-ray binaries. Both results are unexpected and have implications for the rate of magnetic field decay and the isolated neutron star population.Comment: 22 pages, 50 figures; to appear in MNRA

    Spin equilibrium in strongly-magnetized accreting stars

    Get PDF
    Strongly magnetized accreting stars are often hypothesized to be in `spin equilibrium' with their surrounding accretion flows, which requires that the accretion rate changes more slowly than it takes the star to reach spin equilibrium. This is not true for most magnetically accreting stars, which have strongly variable accretion outbursts on time-scales much shorter than the time it would take to reach spin equilibrium. This paper examines how accretion outbursts affect the time a star takes to reach spin equilibrium and its final equilibrium spin period. I consider several different models for angular momentum loss -- either carried away in an outflow, lost to a stellar wind, or transferred back to the accretion disc (the `trapped disc'). For transient sources, the outflow scenario leads to significantly longer times to reach spin equilibrium (\sim10x), and shorter equilibrium spin periods than would be expected from spin equilibrium arguments, while the `trapped disc' does not. The results suggest that disc trapping plays a significant role in the spin evolution of strongly magnetic stars, with some caveats for young stellar objects.Comment: version accepted by MNRAS; some significant changes to conclusions about FU Ori star

    Transient High Mass X-ray Binaries

    Full text link
    High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. A large fraction of the transient HMXBs are found to be Be/X-ray binaries in which the companion Be star with its circumstellar disk governs the outburst. These outbursts are understood to be due to the sudden enhanced mass accretion to the neutron star and is likely to be associated with changes in the circumstellar disk of the companion. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter bursts. X-ray, infrared and optical observations of these objects provide vital information regarding these systems. Here we review some key observational properties of the transient HMXBs and also discuss some important recent developments from studies of this class of sources. The X-ray properties of these objects are discussed in some detail whereas the optical and infrared properties are briefly discussed.Comment: 21 Pages, 8 Figures, To appear in the special issue of the Bulletin of the Astronomical Society of India on Transients at different wavelengths, eds D.J. Saikia and D.A. Gree

    On the magnetic fields of Be/X-ray pulsars in the Small Magellanic Cloud

    Get PDF
    We explore the possibility to explain the properties of the Be/X-ray pulsars observed in the Small Magellanic Cloud within the magnetic levitation accretion scenario. This implies that their X-ray emission is powered by a wind-fed accretion onto a neutron star (NS) which captures matter from a magnetized stellar wind. The NS in this case is accreting matter from a non-keplerian magnetically levitating disc (ML-disc) which is surrounding its magnetosphere. This allows us to explain the observed periods of the pulsars in terms of spin equilibrium without the need of invoking dipole magnetic fields outside the usual range ~ 10^11- 10^13 G inferred from cyclotron features of Galactic high mass X-ray binaries. We find that the equilibrium period of a NS, under certain conditions, depends strongly on the magnetization of the stellar wind of its massive companion and, correspondingly, on the magnetic field of the massive companion itself. This may help to explain why similar NSs in binaries with similar properties rotate with different periods yielding a large scatter of periods of the accretion-powered pulsar observed in SMC and our galaxy.Comment: 6 pages, 1 figure, Published in MNRAS 454, 3760-3765 (2015

    X-Ray Timing, Spectroscopy and Photometry of the Anomalous X-Ray Pulsar Candidate CXOU J010043.1-721134

    Full text link
    We present new X-ray timing and spectral results on the 8.0-second X-ray pulsar CXOU J010043.1-721134 from a series of observations using the Chandra X-ray Observatory. We find a spin period in 2004 January of 8.020392pm0.000009 seconds. Comparison of this to 2001 Chandra observations implies a period derivative dot{P} = (1.88 pm 0.08) times 10^{-11} s s^{-1}, leading to an inferred dipole surface magnetic field of 3.9 times 10^{14} G. The spectrum is well fit to an absorbed blackbody of temperature kT = 0.38pm0.02 keV with a power law tail of photon index Gamma = 2.0pm0.6. We find that the source has an unabsorbed X-ray flux (0.5-10 keV) of 4(+2-1) times 10^{-13} erg cm^{-2} s^{-1} and a corresponding X-ray luminosity of ~2 times 10^{35} erg s^{-1} for a distance of 60 kpc. These properties support classification of CXOU J010043.1-721134 as the seventh confirmed anomalous X-ray pulsar,the eleventh confirmed magnetar, and the first magnetar to be identified in the Small Magellanic Cloud.Comment: 5 pages, plus 1 embedded eps figure. Refined coordinates of source, including typo in declination. ApJ Letters, in pres
    corecore