279 research outputs found

    A Framework for the Landscape

    Full text link
    It seems likely that string theory has a landscape of vacua that includes very many metastable de Sitter spaces. However, as emphasized by Banks, Dine and Gorbatov, no current framework exists for examining these metastable vacua in string theory. In this paper we attempt to correct this situation by introducing an eternally inflating background in which the entire collection of accelerating cosmologies is present as intermediate states. The background is a classical solution which consists of a bubble of zero cosmological constant inside de Sitter space, separated by a domain wall. At early and late times the flat space region becomes infinitely big, so an S-matrix can be defined. Quantum mechanically, the system can tunnel to an intermediate state which is pure de Sitter space. We present evidence that a string theory S-matrix makes sense in this background and contains metastable de Sitter space as an intermediate state.Comment: 29+13 pages, 25 figures; v2: minor corrections, references adde

    Complete Classification of Four-Dimensional Black Hole and Membrane Solutions in IR-modified Ho\v{r}ava Gravity

    Get PDF
    Ho\v{r}ava gravity has been proposed as a renormalizable, higher-derivative gravity without ghost problems, by considering different scaling dimensions for space and time. In the non-relativistic higher-derivative generalization of Einstein gravity, the meaning and physical properties of black hole and membrane space-times are quite different from the conventional ones. Here, we study the singularity and horizon structures of such geometries in IR-modified Ho\v{r}ava gravity, where the so-called "detailed balance" condition is softly broken in IR. We classify all the viable static solutions without naked singularities and study its close connection to non-singular cosmology solutions. We find that, in addition to the usual point-like singularity at r=0r=0, there exists a "surface-like" curvature singularity at finite r=rSr=r_S which is the cutting edge of the real-valued space-time. The degree of divergence of such singularities is milder than those of general relativity, and the Hawking temperature of the horizons diverges when they coincide with the singularities. As a byproduct we find that, in addition to the usual "asymptotic limit," a consistent flow of coupling constants, that we called "GR flow limit," is needed in order to recover general relativity in the IR.Comment: Accepted in JHEP, Typos correcte
    corecore