207 research outputs found

    Cluster Weighted Model Based on TSNE algorithm for High-Dimensional Data

    Full text link
    Similar to many Machine Learning models, both accuracy and speed of the Cluster weighted models (CWMs) can be hampered by high-dimensional data, leading to previous works on a parsimonious technique to reduce the effect of "Curse of dimensionality" on mixture models. In this work, we review the background study of the cluster weighted models (CWMs). We further show that parsimonious technique is not sufficient for mixture models to thrive in the presence of huge high-dimensional data. We discuss a heuristic for detecting the hidden components by choosing the initial values of location parameters using the default values in the "FlexCWM" R package. We introduce a dimensionality reduction technique called T-distributed stochastic neighbor embedding (TSNE) to enhance the parsimonious CWMs in high-dimensional space. Originally, CWMs are suited for regression but for classification purposes, all multi-class variables are transformed logarithmically with some noise. The parameters of the model are obtained via expectation maximization algorithm. The effectiveness of the discussed technique is demonstrated using real data sets from different fields

    Deep Residual Networks for Hyperspectral Image Classification

    Get PDF
    Copyright 2017 IEEE. Published in the IEEE 2017 International Geoscience & Remote Sensing Symposium (IGARSS 2017), scheduled for July 23-28, 2017 in Fort Worth, Texas, USA. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.Deep neural networks can learn deep feature representation for hyperspectral image (HSI) interpretation and achieve high classification accuracy in different datasets. However, counterintuitively, the classification performance of deep learning models degrades as their depth increases. Therefore, we add identity mappings to convolutional neural networks for every two convolutional layers to build deep residual networks (ResNets). To study the influence of deep learning model size on HSI classification accuracy, this paper applied ResNets and CNNs with different depth and width using two challenging datasets. Moreover, we tested the effectiveness of batch normalization as a regularization method with different model settings. The experimental results demonstrate that ResNets mitigate the declining-accuracy effect and achieved promising classification performance with 10% and 5% training sample percentages for the University of Pavia and Indian Pines datasets, respectively. In addition, t-Distributed Stochastic Neighbor Embedding (t-SNE) provides a direct view of the extracted features through dimensionality reduction

    Semi-Supervised Normalized Embeddings for Fusion and Land-Use Classification of Multiple View Data

    Get PDF
    Land-use classification from multiple data sources is an important problem in remote sensing. Data fusion algorithms like Semi-Supervised Manifold Alignment (SSMA) and Manifold Alignment with Schroedinger Eigenmaps (SEMA) use spectral and/or spatial features from multispectral, multimodal imagery to project each data source into a common latent space in which classification can be performed. However, in order for these algorithms to be well-posed, they require an expert user to either directly identify pairwise dissimilarities in the data or to identify class labels for a subset of points from which pairwise dissimilarities can be derived. In this paper, we propose a related data fusion technique, which we refer to as Semi-Supervised Normalized Embeddings (SSNE). SSNE is defined by modifying the SSMA/SEMA objective functions to incorporate an extra normalization term that enables a latent space to be well-defined even when no pairwise-dissimilarities are provided. Using publicly available data from the 2017 IEEE GRSS Data Fusion Contest, we show that SSNE enables similar land-use classification performance to SSMA/SEMA in scenarios where pairwise dissimilarities are available, but that unlike SSMA/SEMA, it also enables land-use classification in other scenarios. We compare the effect of applying different classification algorithms including a support vector machine (SVM), a linear discriminant analysis classifier (LDA), and a random forest classifier (RF); we show that SSMA/SEMA and SSNE robust to the use of different classifiers. In addition to comparing the classification performance of SSNE to SSMA/SEMA and comparing classification algorithm, we utilize manifold alignment to classify unknown views

    Sparse Coding Based Feature Representation Method for Remote Sensing Images

    Get PDF
    In this dissertation, we study sparse coding based feature representation method for the classification of multispectral and hyperspectral images (HSI). The existing feature representation systems based on the sparse signal model are computationally expensive, requiring to solve a convex optimization problem to learn a dictionary. A sparse coding feature representation framework for the classification of HSI is presented that alleviates the complexity of sparse coding through sub-band construction, dictionary learning, and encoding steps. In the framework, we construct the dictionary based upon the extracted sub-bands from the spectral representation of a pixel. In the encoding step, we utilize a soft threshold function to obtain sparse feature representations for HSI. Experimental results showed that a randomly selected dictionary could be as effective as a dictionary learned from optimization. The new representation usually has a very high dimensionality requiring a lot of computational resources. In addition, the spatial information of the HSI data has not been included in the representation. Thus, we modify the framework by incorporating the spatial information of the HSI pixels and reducing the dimension of the new sparse representations. The enhanced model, called sparse coding based dense feature representation (SC-DFR), is integrated with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) classifiers to discriminate different types of land cover. We evaluated the proposed algorithm on three well known HSI datasets and compared our method to four recently developed classification methods: SVM, CKSVM, simultaneous orthogonal matching pursuit (SOMP) and image fusion and recursive filtering (IFRF). The results from the experiments showed that the proposed method can achieve better overall and average classification accuracies with a much more compact representation leading to more efficient sparse models for HSI classification. To further verify the power of the new feature representation method, we applied it to a pan-sharpened image to detect seafloor scars in shallow waters. Propeller scars are formed when boat propellers strike and break apart seagrass beds, resulting in habitat loss. We developed a robust identification system by incorporating morphological filters to detect and map the scars. Our results showed that the proposed method can be implemented on a regular basis to monitor changes in habitat characteristics of coastal waters
    • …
    corecore