224,385 research outputs found

    Multipole expansion of strongly focussed laser beams

    Full text link
    Multipole expansion of an incident radiation field - that is, representation of the fields as sums of vector spherical wavefunctions - is essential for theoretical light scattering methods such as the T-matrix method and generalised Lorenz-Mie theory (GLMT). In general, it is theoretically straightforward to find a vector spherical wavefunction representation of an arbitrary radiation field. For example, a simple formula results in the useful case of an incident plane wave. Laser beams present some difficulties. These problems are not a result of any deficiency in the basic process of spherical wavefunction expansion, but are due to the fact that laser beams, in their standard representations, are not radiation fields, but only approximations of radiation fields. This results from the standard laser beam representations being solutions to the paraxial scalar wave equation. We present an efficient method for determining the multipole representation of an arbitrary focussed beam.Comment: 13 pages, 7 figure

    Analytical solution of the dynamical spherical MIT bag

    Get PDF
    We prove that when the bag surface is allowed to move radially, the equations of motion derived from the MIT bag Lagrangian with massless quarks and a spherical boundary admit only one solution, which corresponds to a bag expanding at the speed of light. This result implies that some new physics ingredients, such as coupling to meson fields, are needed to make the dynamical bag a consistent model of hadrons.Comment: Revtex, no figures. Submitted to Journal of Physics

    Ergodicity and Gaussianity for Spherical Random Fields

    Get PDF
    We investigate the relationship between ergodicity and asymptotic Gaussianity of isotropic spherical random fields, in the high-resolution (or high-frequency) limit. In particular, our results suggest that under a wide variety of circumstances the two conditions are equivalent, i.e. the sample angular power spectrum may converge to the population value if and only if the underlying field is asymptotically Gaussian, in the high frequency sense. These findings may shed some light on the role of Cosmic Variance in Cosmic Microwave Background (CMB) radiation data analysis.Comment: 25 pages; PACS : 02.50-r, 98.70-Vc, 98.80-

    Vector Spherical Wavefunction Expansion of a Strongly Focussed Laser Beam

    Get PDF
    Vector spherical wavefunction expansions of an incident radiation field are essential for theoretical light scattering methods such as the T-matrix method and generalized Lorenz-Mie theory (GLMT). In general, it is theoretically straightforward to find a vector spherical wavefunction representation of an arbitrary radiation field. For example, a simple formula results in the useful case of an incident plane wave. Laser beams present some difficulties. These problems are not a result of any deficiency in the basic process of spherical wavefunction expansion, but are due to the fact that laser beams, in their standard representations, are not radiation fields, but approximations of radiation fields. We show that both integral and point-matching methods can be used to find vector spherical wavefunction expansions of laser beams, including strongly focussed beams
    • …
    corecore