22,148 research outputs found

    Triangulated Manifolds with Few Vertices: Centrally Symmetric Spheres and Products of Spheres

    Full text link
    The aim of this paper is to give a survey of the known results concerning centrally symmetric polytopes, spheres, and manifolds. We further enumerate nearly neighborly centrally symmetric spheres and centrally symmetric products of spheres with dihedral or cyclic symmetry on few vertices, and we present an infinite series of vertex-transitive nearly neighborly centrally symmetric 3-spheres.Comment: 26 pages, 8 figure

    Combinatorial 3-manifolds with 10 vertices

    Full text link
    We give a complete enumeration of all combinatorial 3-manifolds with 10 vertices: There are precisely 247882 triangulated 3-spheres with 10 vertices as well as 518 vertex-minimal triangulations of the sphere product S2×S1S^2\times S^1 and 615 triangulations of the twisted sphere product S^2_\times_S^1. All the 3-spheres with up to 10 vertices are shellable, but there are 29 vertex-minimal non-shellable 3-balls with 9 vertices.Comment: 9 pages, minor revisions, to appear in Beitr. Algebra Geo

    One-Point Suspensions and Wreath Products of Polytopes and Spheres

    Get PDF
    It is known that the suspension of a simplicial complex can be realized with only one additional point. Suitable iterations of this construction generate highly symmetric simplicial complexes with various interesting combinatorial and topological properties. In particular, infinitely many non-PL spheres as well as contractible simplicial complexes with a vertex-transitive group of automorphisms can be obtained in this way.Comment: 17 pages, 8 figure

    Topological Prismatoids and Small Simplicial Spheres of Large Diameter

    Full text link
    We introduce topological prismatoids, a combinatorial abstraction of the (geometric) prismatoids recently introduced by the second author to construct counter-examples to the Hirsch conjecture. We show that the `strong dd-step Theorem' that allows to construct such large-diameter polytopes from `non-dd-step' prismatoids still works at this combinatorial level. Then, using metaheuristic methods on the flip graph, we construct four combinatorially different non-dd-step 44-dimensional topological prismatoids with 1414 vertices. This implies the existence of 88-dimensional spheres with 1818 vertices whose combinatorial diameter exceeds the Hirsch bound. These examples are smaller that the previously known examples by Mani and Walkup in 1980 (2424 vertices, dimension 1111). Our non-Hirsch spheres are shellable but we do not know whether they are realizable as polytopes.Comment: 20 pages. Changes from v1 and v2: Reduced the part on shellability and general improvement to accesibilit

    Face enumeration on simplicial complexes

    Full text link
    Let MM be a closed triangulable manifold, and let Δ\Delta be a triangulation of MM. What is the smallest number of vertices that Δ\Delta can have? How big or small can the number of edges of Δ\Delta be as a function of the number of vertices? More generally, what are the possible face numbers (ff-numbers, for short) that Δ\Delta can have? In other words, what restrictions does the topology of MM place on the possible ff-numbers of triangulations of MM? To make things even more interesting, we can add some combinatorial conditions on the triangulations we are considering (e.g., flagness, balancedness, etc.) and ask what additional restrictions these combinatorial conditions impose. While only a few theorems in this area of combinatorics were known a couple of decades ago, in the last ten years or so, the field simply exploded with new results and ideas. Thus we feel that a survey paper is long overdue. As new theorems are being proved while we are typing this chapter, and as we have only a limited number of pages, we apologize in advance to our friends and colleagues, some of whose results will not get mentioned here.Comment: Chapter for upcoming IMA volume Recent Trends in Combinatoric

    Minimal Triangulations of Manifolds

    Full text link
    In this survey article, we are interested on minimal triangulations of closed pl manifolds. We present a brief survey on the works done in last 25 years on the following: (i) Finding the minimal number of vertices required to triangulate a given pl manifold. (ii) Given positive integers nn and dd, construction of nn-vertex triangulations of different dd-dimensional pl manifolds. (iii) Classifications of all the triangulations of a given pl manifold with same number of vertices. In Section 1, we have given all the definitions which are required for the remaining part of this article. In Section 2, we have presented a very brief history of triangulations of manifolds. In Section 3, we have presented examples of several vertex-minimal triangulations. In Section 4, we have presented some interesting results on triangulations of manifolds. In particular, we have stated the Lower Bound Theorem and the Upper Bound Theorem. In Section 5, we have stated several results on minimal triangulations without proofs. Proofs are available in the references mentioned there.Comment: Survey article, 29 page
    corecore