1,128 research outputs found

    Fast global and partial reflective symmetry analyses using boundary surfaces of mechanical components

    No full text
    International audienceAxisymmetry and planar reflective symmetry properties of mechanical components can be used throughout a product development process to restructure the modeling process of a component, simplify the computation of tool path trajectories, assembly trajectories, etc. To this end, the restructured geometric model of such components must be at least as accurate as the manufacturing processes used to produce them, likewise their symmetry properties must be extracted with the same level of accuracy to preserve the accuracy of their geometric model. The proposed symmetry analysis is performed on a B-Rep CAD model through a divide-and-conquer approach over the boundary of a component with faces as atomic entities. As a result, it is possible to identify rapidly all global symmetry planes and axisymmetry as well as local symmetries. Also, the corresponding algorithm is fast enough to be inserted in CAD/CAM operators as part of interactive modeling processes, it performs at the same level of tolerance than geometric modelers and it is independent of the face and edge parameterizations

    3D mesh metamorphosis from spherical parameterization for conceptual design

    Get PDF
    Engineering product design is an information intensive decision-making process that consists of several phases including design specification definition, design concepts generation, detailed design and analysis, and manufacturing. Usually, generating geometry models for visualization is a big challenge for early stage conceptual design. Complexity of existing computer aided design packages constrains participation of people with various backgrounds in the design process. In addition, many design processes do not take advantage of the rich amount of legacy information available for new concepts creation. The research presented here explores the use of advanced graphical techniques to quickly and efficiently merge legacy information with new design concepts to rapidly create new conceptual product designs. 3D mesh metamorphosis framework 3DMeshMorpher was created to construct new models by navigating in a shape-space of registered design models. The framework is composed of: i) a fast spherical parameterization method to map a geometric model (genus-0) onto a unit sphere; ii) a geometric feature identification and picking technique based on 3D skeleton extraction; and iii) a LOD controllable 3D remeshing scheme with spherical mesh subdivision based on the developedspherical parameterization. This efficient software framework enables designers to create numerous geometric concepts in real time with a simple graphical user interface. The spherical parameterization method is focused on closed genus-zero meshes. It is based upon barycentric coordinates with convex boundary. Unlike most existing similar approaches which deal with each vertex in the mesh equally, the method developed in this research focuses primarily on resolving overlapping areas, which helps speed the parameterization process. The algorithm starts by normalizing the source mesh onto a unit sphere and followed by some initial relaxation via Gauss-Seidel iterations. Due to its emphasis on solving only challenging overlapping regions, this parameterization process is much faster than existing spherical mapping methods. To ensure the correspondence of features from different models, we introduce a skeleton based feature identification and picking method for features alignment. Unlike traditional methods that align single point for each feature, this method can provide alignments for complete feature areas. This could help users to create more reasonable intermediate morphing results with preserved topological features. This skeleton featuring framework could potentially be extended to automatic features alignment for geometries with similar topologies. The skeleton extracted could also be applied for other applications such as skeleton-based animations. The 3D remeshing algorithm with spherical mesh subdivision is developed to generate a common connectivity for different mesh models. This method is derived from the concept of spherical mesh subdivision. The local recursive subdivision can be set to match the desired LOD (level of details) for source spherical mesh. Such LOD is controllable and this allows various outputs with different resolutions. Such recursive subdivision then follows by a triangular correction process which ensures valid triangulations for the remeshing. And the final mesh merging and reconstruction process produces the remeshing model with desired LOD specified from user. Usually the final merged model contains all the geometric details from each model with reasonable amount of vertices, unlike other existing methods that result in big amount of vertices in the merged model. Such multi-resolution outputs with controllable LOD could also be applied in various other computer graphics applications such as computer games

    Comparing Features of Three-Dimensional Object Models Using Registration Based on Surface Curvature Signatures

    Get PDF
    This dissertation presents a technique for comparing local shape properties for similar three-dimensional objects represented by meshes. Our novel shape representation, the curvature map, describes shape as a function of surface curvature in the region around a point. A multi-pass approach is applied to the curvature map to detect features at different scales. The feature detection step does not require user input or parameter tuning. We use features ordered by strength, the similarity of pairs of features, and pruning based on geometric consistency to efficiently determine key corresponding locations on the objects. For genus zero objects, the corresponding locations are used to generate a consistent spherical parameterization that defines the point-to-point correspondence used for the final shape comparison
    • …
    corecore