14 research outputs found

    Essential techniques for improving visual realism of laparoscopic surgery simulation.

    Get PDF
    With the prevalence of laparoscopic surgery, the request for reliable training and assessment is becoming increasingly important. The traditional way of training is both time consuming and cost intensive, and may cause ethical or moral issues. With the development of computer technologies, virtual reality has entered the world of consumer electronics as a new way to enhance tactile and visual sensory experiences. Virtual reality based surgical skill training gradually becomes an effective supplementary to the traditional laparoscopic skill training in many surgical theatres. To provide high fidelity virtual surgery training experiences, the presentation of the virtual world should have the same level of realism as what surgeons see and feel during real operations. However, the weak computing power limits the potential level of details on the graphics presentation and physical behaviour of virtual objects, which will further influence the fidelity of tactile interaction. Achieving visual realism (realistic graphics presentation and accurate physical behaviour) and good user experience using limited computing resources is the main challenge for laparoscopic surgery simulation. The topic of visual realism in laparoscopic surgery simulation has not been well researched. This topic mainly relates to the area of 3D anatomy modeling, soft body simulation and rendering. Current researches in computer graphics and game communities are not tailored for laparoscopic surgery simulation. The direct use of those techniques in developing surgery simulators will often result in poor quality anatomy model, inaccurate simulation, low fidelity visual effect, poor user experience and inefficient production pipeline, which significantly influence the visual realism of the virtual world. The development of laparoscopic surgery simulator is an interdiscipline of computer graphics, computational physics and haptics. However, current researches barely focus on the study of tailored techniques and efficient production pipeline which often result in the long term research cycle and daunting cost for simulator development. This research is aiming at improving the visual realism of laparoscopic surgery simulation from the perspective of computer graphics. In this research, a set of tailor techniques have been proposed to improve the visual realism for laparoscopic surgery simulation. For anatomy modeling, an automatic and efficient 3D anatomy conversion pipeline is proposed which can convert bad quality 3D anatomy into simulation ready state while preserving the original model’s surface parameterization property. For simulation, a soft tissue simulation pipeline is pro- posed which can provide multi-layer heterogeneous soft tissue modeling and intuitive physically editable simulation based on uniform polynomial based hyperelastic material representation. For interaction, a collision detection and interaction system based on adaptive circumphere structure is proposed which supports robust and efficient sliding con- tact, energized dissection and clip. For rendering, a multi-layer soft tissue rendering pipeline is proposed which decomposed the multi-layer structure of soft tissue into corresponding material asset required by state-of-art rendering techniques. Based on this research, a system framework for building a laparoscopic surgery simulator is also proposed to test the feasibility of those tailored techniques

    Slosh Damping with Floating Magnetoactive Micro-Baffles

    Get PDF
    Liquid sloshing within propellant tanks of launch vehicles and other major vehicles has been a major concern. Various methods have been utilized for the damping of slosh through Propellant Management Devices (PMD) accomplishing a wide range of results. Exploratory research conducted at the Embry-Riddle Aeronautical University Fuel Slosh Test Facility in development of an innovative PMD is presented. Embedding floating micro-baffles with a magnetoactive material such that the baffle can be manipulated when exposed to a magnetic field preserves the benefits of both floating and static baffle designs. Activated micro-baffles form a rigid layer at the free surface and provide a restriction of the fluid motion. Proposed micro-baffle design and magnetic activation source method along with proof-of-concept experiments comparing the scope of this research to previous PMD methods are presented. A computational fluid dynamics approach is outlined to compliment these experimental results

    A multiscale method for mixed convective systems - Coupled calculations with ATHLET and OpenFOAM of the PHENIX NCT

    Get PDF
    Das Generation IV International Forum schlug sechs Konzepte für Innovative Reaktoren vor, die am vielversprechendsten sind. Eines dieser Konzepte ist der Natrium gekühlte schnelle Reaktor (SFR) mit einer langen Forschungs- und Entwicklungsgeschichte. Dieser Reaktortyp weist ein hohes Potential auf, um die GEN-IV Kriterien zu erfüllen. Dazu gehört der im Jahr 1968 in Frankreich erbaute und 1973 an das Elektrizitätsnetz angeschlossene PHENIX Reaktor. Dieser Prototypreaktor wurde bis 2004 betrieben und anschließend zu Forschungszwecken, wie der Transmutation und der Evaluation von Unfallszenarien weiter verwendet. Die endgültige Abschaltung des PHENIX Reaktors fand 2009 statt. Zuvor wurden einige finale Tests geplant und durchgeführt, einschließlich eines Tests zur Naturkonvektion (NCT) des Primärkreislaufs. Der Naturkonvektions-Test wird als Benchmark-Test in der vorliegenden Arbeit verwendet und dient Qualifikation und Validierung von System-Rechenprogrammen. Im Rahmen eines EU-Forschungsprojektes wurde der Benchmark-Test als sogenannter Blind-Test durchgeführt. Diese Rechenprogramme verwenden den Ansatz der konzentrierten Parameter und werden zur Berechnung des transienten Verhaltens von thermo-hydraulischen Systemen (STH) angewendet. Mit diesem Ansatz ist es möglich, komplexe Systeme ganzheitlich zu betrachten und zu berechnen. In Deutschland wird das ATHLET Rechenprogramm von der Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) gGmbH entwickelt. Da alle Kernkraftwerke in Deutschland, die zur kommerziellen Stromerzeugung verwendet werden mit Wasser gekühlt sind, wurde ATHLET bislang nur für diese Zwecke entwickelt. Ein Teilprojekt des europäischen THINS Projektes (Thermal-Hydraulics of Innovative Nuclear Systems) ist die Qualifikation von System-Rechenprogrammen, die bisher nur für wassergekühlte Kernkraftwerke entwickelt wurden, für System- und Sicherheitsrechnungen im Rahmen der GEN-IV. Die vorgelegte Arbeit zeigt die Erweiterung des ATHLET Rechenprogramms für Natriumanwendungen mittels eines Multi-Fluid Ansatzes. Numerische Strömungssimulation (CFD) wird in vielen Gebieten der Strömungsmechanik angewandt. Sie gibt qualitativ hochwertige und hoch aufgelöste Ergebnisse in gewünschten Bereichen. Der Rechenaufwand - und damit die Kosten - sind allerdings durch eine damit verbundene, lange Rechenzeit hoch. Die Entwicklung einer optimierten Methode ist ebenfalls Teil des THINS Projekts, bei der die Effektivität einer Berechnung auf Systemebene mit der hohen Auflösung von CFD kombiniert (gekoppelt) werden. Nach einem einleitenden Kapitel werden im Rahmen dieser Arbeit Modifikationen des ATHLET Rechenprogramms für Natriumanwendungen erläutert. Anschließend wird an einem System-Modell für den PHENIX Primärkreislauf im Rahmen des NCT eine Machbarkeitsstudie durchgeführt. Soweit möglich, werden Assessments der Implementierungen mit Hilfe des NCT diskutiert. Danach wird das heiße Becken des PHENIX-Primärkreislaufs in CFD modelliert und mit dem quelloffenen Rechenprogramm OpenFOAM berechnet. Das heiße Becken wurde aus einem der drei großen Volumina ausgewählt. Es wird angenommen, dass hier starke dreidimensionale Effekte vorherrschen, welche durch einen System-Ansatz nicht abgebildet werden können. Die Reynolds gemittelte Navier-Stokes Methode mit einem k-epsilon Turbulenzmodell wird hierbei angewandt. Um die zwei unterschiedlichen Methoden zu kombinieren, wird eine Kopplungsstrategie entwickelt und verifiziert. Die Programmeinbindung wird aufgezeigt und am Beispiel des PHENIX NCT diskutiert. Im Laufe des transienten Szenarios zeigt die gekoppelte Lösungsmethode abweichende Ergebnisse im Vergleich zur alleinigen System-Rechenprogramm Lösung. Dies wird durch starke, dreidimensionale Effekte im heißen Becken des PHENIX Primärkreislaufs hervorgerufen und kann durch das thermo-hydraulische System-Rechenprogramm nicht erfasst werden. Ein weiteres, theoretisches Szenario wird ebenfalls aufgezeigt, um das Potential der verifizierten und diskutierten Kopplungs-Strategie zu veranschaulichen. Hier kann eine Ähnlichkeit zwischen CFD und STH beobachtet werden. Diese tritt auf, wenn die Strömungsrichtung und deren Orientierung in beiden Rechenprogrammen identisch ist. Ebenso müssen die Geschwindigkeitsgrößen sehr klein sein

    Design of decorative 3D models: from geodesic ornaments to tangible assemblies

    Get PDF
    L'obiettivo di questa tesi è sviluppare strumenti utili per creare opere d'arte decorative digitali in 3D. Uno dei processi decorativi più comunemente usati prevede la creazione di pattern decorativi, al fine di abbellire gli oggetti. Questi pattern possono essere dipinti sull'oggetto di base o realizzati con l'applicazione di piccoli elementi decorativi. Tuttavia, la loro realizzazione nei media digitali non è banale. Da un lato, gli utenti esperti possono eseguire manualmente la pittura delle texture o scolpire ogni decorazione, ma questo processo può richiedere ore per produrre un singolo pezzo e deve essere ripetuto da zero per ogni modello da decorare. D'altra parte, gli approcci automatici allo stato dell'arte si basano sull'approssimazione di questi processi con texturing basato su esempi o texturing procedurale, o con sistemi di riproiezione 3D. Tuttavia, questi approcci possono introdurre importanti limiti nei modelli utilizzabili e nella qualità dei risultati. Il nostro lavoro sfrutta invece i recenti progressi e miglioramenti delle prestazioni nel campo dell'elaborazione geometrica per creare modelli decorativi direttamente sulle superfici. Presentiamo una pipeline per i pattern 2D e una per quelli 3D, e dimostriamo come ognuna di esse possa ricreare una vasta gamma di risultati con minime modifiche dei parametri. Inoltre, studiamo la possibilità di creare modelli decorativi tangibili. I pattern 3D generati possono essere stampati in 3D e applicati a oggetti realmente esistenti precedentemente scansionati. Discutiamo anche la creazione di modelli con mattoncini da costruzione, e la possibilità di mescolare mattoncini standard e mattoncini custom stampati in 3D. Ciò consente una rappresentazione precisa indipendentemente da quanto la voxelizzazione sia approssimativa. I principali contributi di questa tesi sono l'implementazione di due diverse pipeline decorative, un approccio euristico alla costruzione con mattoncini e un dataset per testare quest'ultimo.The aim of this thesis is to develop effective tools to create digital decorative 3D artworks. Real-world art often involves the use of decorative patterns to enrich objects. These patterns can be painted on the base or might be realized with the application of small decorative elements. However, their creation in digital media is not trivial. On the one hand, users can manually perform texture paint or sculpt each decoration, in a process that can take hours to produce a single piece and needs to be repeated from the ground up for every model that needs to be decorated. On the other hand, automatic approaches in state of the art rely on approximating these processes with procedural or by-example texturing or with 3D reprojection. However, these approaches can introduce significant limitations in the models that can be used and in the quality of the results. Instead, our work exploits the recent advances and performance improvements in the geometry processing field to create decorative patterns directly on surfaces. We present a pipeline for 2D and one for 3D patterns and demonstrate how each of them can recreate a variety of results with minimal tweaking of the parameters. Furthermore, we investigate the possibility of creating decorative tangible models. The 3D patterns we generate can be 3D printed and applied to previously scanned real-world objects. We also discuss the creation of models with standard building bricks and the possibility of mixing standard and custom 3D-printed bricks. This allows for a precise representation regardless of the coarseness of the voxelization. The main contributions of this thesis are the implementation of two different decorative pipelines, a heuristic approach to brick construction, and a dataset to test the latter

    Galerkin projection of discrete fields via supermesh construction

    No full text
    Interpolation of discrete FIelds arises frequently in computational physics. This thesis focuses on the novel implementation and analysis of Galerkin projection, an interpolation technique with three principal advantages over its competitors: it is optimally accurate in the L2 norm, it is conservative, and it is well-defined in the case of spaces of discontinuous functions. While these desirable properties have been known for some time, the implementation of Galerkin projection is challenging; this thesis reports the first successful general implementation. A thorough review of the history, development and current frontiers of adaptive remeshing is given. Adaptive remeshing is the primary motivation for the development of Galerkin projection, as its use necessitates the interpolation of discrete fields. The Galerkin projection is discussed and the geometric concept necessary for its implementation, the supermesh, is introduced. The efficient local construction of the supermesh of two meshes by the intersection of the elements of the input meshes is then described. Next, the element-element association problem of identifying which elements from the input meshes intersect is analysed. With efficient algorithms for its construction in hand, applications of supermeshing other than Galerkin projections are discussed, focusing on the computation of diagnostics of simulations which employ adaptive remeshing. Examples demonstrating the effectiveness and efficiency of the presented algorithms are given throughout. The thesis closes with some conclusions and possibilities for future work

    Modelado jerárquico de objetos 3D con superficies de subdivisión

    Get PDF
    Las SSs (Superficies de Subdivisión) son un potente paradigma de modelado de objetos 3D (tridimensionales) que establece un puente entre los dos enfoques tradicionales a la aproximación de superficies, basados en mallas poligonales y de parches alabeados, que conllevan problemas uno y otro. Los esquemas de subdivisión permiten definir una superficie suave (a tramos), como las más frecuentes en la práctica, como el límite de un proceso recursivo de refinamiento de una malla de control burda, que puede ser descrita muy compactamente. Además, la recursividad inherente a las SSs establece naturalmente una relación de anidamiento piramidal entre las mallas / NDs (Niveles de Detalle) generadas/os sucesivamente, por lo que las SSs se prestan extraordinariamente al AMRO (Análisis Multiresolución mediante Ondículas) de superficies, que tiene aplicaciones prácticas inmediatas e interesantísimas, como la codificación y la edición jerárquicas de modelos 3D. Empezamos describiendo los vínculos entre las tres áreas que han servido de base a nuestro trabajo (SSs, extracción automática de NDs y AMRO) para explicar como encajan estas tres piezas del puzzle del modelado jerárquico de objetos de 3D con SSs. El AMRO consiste en descomponer una función en una versión burda suya y un conjunto de refinamientos aditivos anidados jerárquicamente llamados "coeficientes ondiculares". La teoría clásica de ondículas estudia las señales clásicas nD: las definidas sobre dominios paramétricos homeomorfos a R" o (0,1)n como el audio (n=1), las imágenes (n=2) o el vídeo (n=3). En topologías menos triviales, como las variedades 2D) (superficies en el espacio 3D), el AMRO no es tan obvio, pero sigue siendo posible si se enfoca desde la perspectiva de las SSs. Basta con partir de una malla burda que aproxime a un bajo ND la superficie considerada, subdividirla recursivamente y, al hacerlo, ir añadiendo los coeficientes ondiculares, que son los detalles 3D necesarios para obtener aproximaciones más y más finas a la superficie original. Pasamos después a las aplicaciones prácticas que constituyen nuestros principal desarrollo original y, en particular, presentamos una técnica de codificación jerárquica de modelos 3D basada en SSs, que actúa sobre los detalles 3D mencionados: los expresa en un referencial normal loscal; los organiza según una estructura jerárquica basada en facetas; los cuantifica dedicando menos bits a sus componentes tangenciales, menos energéticas, y los "escalariza"; y los codifica dinalmente gracias a una técnica similar al SPIHT (Set Partitioning In Hierarchical Tress) de Said y Pearlman. El resultado es un código completamente embebido y al menos dos veces más compacto, para superficies mayormente suaves, que los obtenidos con técnicas de codificación progresiva de mallas 3D publicadas previamente, en las que además los NDs no están anidados piramidalmente. Finalmente, describimos varios métodos auxiliares que hemos desarrollado, mejorando técnicas previas y creando otras propias, ya que una solución completa al modelado de objetos 3D con SSs requiere resolver otros dos problemas. El primero es la extracción de una malla base (triangular, en nuestro caso) de la superficie original, habitualmente dada por una malla triangular fina con conectividad arbitraria. El segundo es la generación de un remallado recursivo con conectividad de subdivisión de la malla original/objetivo mediante un refinamiento recursivo de la malla base, calculando así los detalles 3D necesarios para corregir las posiciones predichas por la subdivisión para nuevos vértices

    Innovative mathematical and numerical models for studying the deformation of shells during industrial forming processes with the Finite Element Method

    Get PDF
    The doctoral thesis "Innovative mathematical and numerical models for studying the deformation of shells during industrial forming processes with the Finite Element Method" aims to contribute to the development of finite element methods for the analysis of stamping processes, a problematic area with a clear industrial application. To achieve the proposed objectives, the first part of this thesis covers the solid-shell elements. This type of element is attractive for the simulation of forming processes, since any type of three-dimensional constitutive law can be formulated without the need to consider any additional conjecture. Additionally, the contact of both sides can be easily treated. This work first presents the development of a triangular prismatic solid-sheet element, for the analysis of thick and thin sheets with capacity for large deformations. This element is in total Lagrangian formulation, and uses neighboring elements to compute a field of quadratic displacements. In the original formulation, a modified right Cauchy tensor was obtained; however, in this work, the formulation is extended obtaining a modified strain gradient, which allows the concepts of push-forward and pull-back to be used. These concepts provide a mathematically consistent method for the definition of temporary derivatives of tensors and, therefore, can be used, for example, to work with elasto-plasticity. This work continues with the development of the contact formulation used, a methodology found in the bibliography on computational contact mechanics for implicit simulations. This formulation consists of an exact integration of the contact interface using mortar methods, which allows obtaining the most consistent integration possible between the integration domains, as well as the most exact possible solution. The most notable contribution of this work is the consideration of dual augmented Lagrange multipliers as an optimization method. To solve the system of equations, a semi-smooth Newton method is considered, which consists of an active set strategy, also extensible in the case of friction problems. The formulation is functional for both frictionless and friction problems, which is essential for simulating stamping processes. This frictional formulation is framed in traditional friction models, such as Coulomb friction, but the development presented can be extended to any type of friction model. The remaining necessary component for the simulation of industrial processes are the constitutive models. In this work, this is materialized in the formulation of plasticity considered. These constitutive models will be considered plasticity models for large deformations, with an arbitrary combination of creep surfaces and plastic potentials: the so-called non-associative models. To calculate the tangent tensor corresponding to these general laws, numerical implementations based on perturbation methods have been considered. Another fundamental contribution of this work is the development of techniques for adaptive remeshing, of which different approaches will be presented. On the one hand, metric-based techniques, including the level-set and Hessian approaches. These techniques are general-purpose and can be considered in both structural problems and fluid mechanics problems. On the other hand, the SPR error estimation method, more conventional than the previous ones, is presented. In this area, the contribution of this work consists in the estimation of error using the Hessian and SPR techniques for the application to numerical contact problems.La tesis doctoral "Modelos matemáticos y numéricos innovadores para el estudio de la deformación de láminas durante los procesos de conformado industrial por el Método de los Elementos Finitos" pretende contribuir al desarrollo de métodos de elementos finitos para el análisis de procesos de estampado, un área problemática con una clara aplicación industrial. De hecho, este tipo de problemas multidisciplinares requieren el conocimiento de múltiples disciplinas, como la mecánica de medios continuos, la plasticidad, la termodinámica y los problemas de contacto, entre otros. Para alcanzar los objetivos propuestos, la primera parte de esta tesis abarca los elementos de sólido lámina. Este tipo de elemento resulta atractivo para la simulación de procesos de conformado, dado que cualquier tipo de ley constitutiva tridimensional puede ser formulada sin necesidad de considerar ninguna conjetura adicional. Además, este tipo de elementos permite realizar una descripción tridimensional del cuerpo deformable, por tanto, el contacto de ambas caras puede ser tratado fácilmente. Este trabajo presenta en primer lugar el desarrollo de un elemento de sólido-lámina prismático triangular, para el análisis de láminas gruesas y delgadas con capacidad para grandes deformaciones. Este elemento figura en formulación Lagrangiana total, y emplea los elementos vecinos para poder computar un campo de desplazamientos cuadráticos. En la formulación original, se obtenía un tensor de Cauchy derecho modificado (¯C); sin embargo, en este trabajo, la formulación se extiende obteniendo un gradiente de deformación modificado (¯F), que permite emplear los conceptos de push-forward y pull-back. Dichos conceptos proveen de un método matemáticamente consistente para la definición de derivadas temporales de tensores y, por tanto, puede ser usado, por ejemplo, para trabajar con elasto-plasticidad. El elemento se basa en tres modificaciones: (a) una aproximación clásica de deformaciones transversales de corte mixtas impuestas; (b) una aproximación de deformaciones impuestas para las Componentes en el plano tangente de la lámina; y (c) una aproximación de deformaciones impuestas mejoradas en la dirección normal a través del espesor, mediante la consideración de un grado de libertad adicional. Los objetivos son poder utilizar el elemento para la simulación de láminas sin bloquear por cortante, mejorar el comportamiento membranal del elemento en el plano tangente, eliminar el bloqueo por efecto Poisson y poder tratar materiales elasto-plásticos con un flujo plástico incompresible, así como materiales elásticos cuasi-incompresibles o materiales con flujo plástico isocórico. El elemento considera un único punto de Gauss en el plano, mientras que permite considerar un número cualquiera de puntos de integración en su eje, con el objetivo de poder considerar problemas con una significativa no linealidad en cuanto a plasticidad. Este trabajo continúa con el desarrollo de la formulación de contacto empleada, una metodología que se encuentra en la bibliografía sobre la mecánica de contacto computacional para simulaciones implícitas. Dicha formulación consiste en una integración exacta de la interfaz de contacto mediante métodos de mortero, lo que permite obtener la integración más consistente posible entre los dominios de integración, así como la solución más exacta posible. La implementación también considera varios algoritmos de optimización, como la optimización mediante penalización. La contribución más notable de este trabajo es la consideración de multiplicadores de Lagrange aumentados duales como método de optimización. Estos permiten condensar estáticamente el sistema de ecuaciones, lo que permite eliminar los multiplicadores de Lagrange de la resolución y, por lo tanto, permite la consideración de solvers iterativos. Además, la formulación ha sido adecuadamente linealizada, asegurando la convergencia cuadrática del problema. Para resolver el sistema de ecuaciones, se considera un método de Newton semi-smooth, que consiste en una estrategia de set activo, extensible también en el caso de problemas friccionales. La formulación es funcional tanto para problemas sin fricción como para problemas friccionales, lo que es esencial para la simulación de procesos de estampado. Esta formulación friccional se enmarca en los modelos de fricción tradicionales, como la fricción de Coulomb, pero el desarrollo presentado puede extenderse a cualquier tipo de modelo de fricción. Esta formulación de contacto es totalmente compatible con el elemento sólido-lámina introducido en este trabajo. El componente necesario restante para la simulación de procesos industriales son los modelos constitutivos. En este trabajo, esto se ve materializado en la formulación de plasticidad considerada. Estos modelos constitutivos se considerarán modelos de plasticidad para grandes deformaciones, con una combinación arbitraria de superficies de fluencia y potenciales plásticos: los llamados modelos no asociados. Para calcular el tensor tangente correspondiente a estas leyes generales, se han considerado implementaciones numéricas basadas en métodos de perturbación. Otra contribución fundamental de este trabajo es el desarrollo de técnicas para el remallado adaptativo, de las que se presentarán distintos enfoques. Por un lado, las técnicas basadas en métricas, incluyendo los enfoques level-set y Hessiano. Estas técnicas son de propósito general y pueden considerarse tanto en la aplicación de problemas estructurales como en problemas de mecánica de fluidos. Por otro lado, se presenta el método de estimación de errores SPR, más convencional que los anteriores. En este ámbito, la contribución de este trabajo consiste en la estimación de error mediante las técnicas de Hessiano y SPR para la aplicación a problemas de contacto numérico. Con los desarrollos previamente introducidos, estaremos en disposición de introducir los casos de aplicación centrados en el contexto de procesos de estampado. Es relevante destacar que estos ejemplos son comparados con las soluciones de referencia disponibles en la bibliografía como forma de validar los desarrollos presentados hasta este punto. El presente documento está organizado de la siguiente manera. El primer capítulo establece los objetivos y revisa la bibliografía acerca de los temas clave de este trabajo. El segundo capítulo hace una introducción de la mecánica de medios continuos y los conceptos relativos al Método de los Elementos Finitos (MEF), necesarios en los desarrollos que se presentarán en los capítulos siguientes. El tercer capítulo aborda la formulación del elemento sólido-lámina, así como del elemento de lámina sin grados de libertad de rotación que inspira el sólido-lámina desarrollado. Esta parte muestra varios ejemplos académicos que son comúnmente empleados en la bibliografía como problemas de referencia de láminas. El cuarto capítulo presenta la formulación desarrollada para la resolución de problemas de contacto numérico, consistente en una formulación implícita de integración exacta mediante métodos mortero y multiplicadores de Lagrange aumentados duales. Este capítulo incluye, asimismo, varios ejemplos comúnmente encontrados en la bibliografía, que generalmente son considerados para su validación. El quinto capítulo presenta la formulación de plasticidad empleada, incluyendo algunos detalles técnicos desde el punto de vista de la implementación, así como varios ejemplos de validación. El sexto capítulo muestra los algoritmos de remallado adaptativo desarrollados en el contexto de este trabajo, y presenta varios ejemplos, que incluyen no solo casos estructurales, sino también de mecánica de fluidos. El séptimo capítulo encapsula algunos casos de validación y aplicación para procesos de estampado. El capítulo final comprende las conclusiones, así como los trabajos que podrían continuar el presente estudio.Postprint (published version

    Surface Remeshing and Applications

    Get PDF
    Due to the focus of popular graphic accelerators, triangle meshes remain the primary representation for 3D surfaces. They are the simplest form of interpolation between surface samples, which may have been acquired with a laser scanner, computed from a 3D scalar field resolved on a regular grid, or identified on slices of medical data. Typical methods for the generation of triangle meshes from raw data attempt to lose as less information as possible, so that the resulting surface models can be used in the widest range of scenarios. When such a general-purpose model has to be used in a particular application context, however, a pre-processing is often worth to be considered. In some cases, it is convenient to slightly modify the geometry and/or the connectivity of the mesh, so that further processing can take place more easily. Other applications may require the mesh to have a pre-defined structure, which is often different from the one of the original general-purpose mesh. The central focus of this thesis is the automatic remeshing of highly detailed surface triangulations. Besides a thorough discussion of state-of-the-art applications such as real-time rendering and simulation, new approaches are proposed which use remeshing for topological analysis, flexible mesh generation and 3D compression. Furthermore, innovative methods are introduced to post-process polygonal models in order to recover information which was lost, or hidden, by a prior remeshing process. Besides the technical contributions, this thesis aims at showing that surface remeshing is much more useful than it may seem at a first sight, as it represents a nearly fundamental step for making several applications feasible in practice
    corecore