6,065 research outputs found

    Context-sensitive Spelling Correction Using Google Web 1T 5-Gram Information

    Full text link
    In computing, spell checking is the process of detecting and sometimes providing spelling suggestions for incorrectly spelled words in a text. Basically, a spell checker is a computer program that uses a dictionary of words to perform spell checking. The bigger the dictionary is, the higher is the error detection rate. The fact that spell checkers are based on regular dictionaries, they suffer from data sparseness problem as they cannot capture large vocabulary of words including proper names, domain-specific terms, technical jargons, special acronyms, and terminologies. As a result, they exhibit low error detection rate and often fail to catch major errors in the text. This paper proposes a new context-sensitive spelling correction method for detecting and correcting non-word and real-word errors in digital text documents. The approach hinges around data statistics from Google Web 1T 5-gram data set which consists of a big volume of n-gram word sequences, extracted from the World Wide Web. Fundamentally, the proposed method comprises an error detector that detects misspellings, a candidate spellings generator based on a character 2-gram model that generates correction suggestions, and an error corrector that performs contextual error correction. Experiments conducted on a set of text documents from different domains and containing misspellings, showed an outstanding spelling error correction rate and a drastic reduction of both non-word and real-word errors. In a further study, the proposed algorithm is to be parallelized so as to lower the computational cost of the error detection and correction processes.Comment: LACSC - Lebanese Association for Computational Sciences - http://www.lacsc.or

    Learning to Resolve Natural Language Ambiguities: A Unified Approach

    Full text link
    We analyze a few of the commonly used statistics based and machine learning algorithms for natural language disambiguation tasks and observe that they can be re-cast as learning linear separators in the feature space. Each of the methods makes a priori assumptions, which it employs, given the data, when searching for its hypothesis. Nevertheless, as we show, it searches a space that is as rich as the space of all linear separators. We use this to build an argument for a data driven approach which merely searches for a good linear separator in the feature space, without further assumptions on the domain or a specific problem. We present such an approach - a sparse network of linear separators, utilizing the Winnow learning algorithm - and show how to use it in a variety of ambiguity resolution problems. The learning approach presented is attribute-efficient and, therefore, appropriate for domains having very large number of attributes. In particular, we present an extensive experimental comparison of our approach with other methods on several well studied lexical disambiguation tasks such as context-sensitive spelling correction, prepositional phrase attachment and part of speech tagging. In all cases we show that our approach either outperforms other methods tried for these tasks or performs comparably to the best

    A comparative evaluation of deep and shallow approaches to the automatic detection of common grammatical errors

    Get PDF
    This paper compares a deep and a shallow processing approach to the problem of classifying a sentence as grammatically wellformed or ill-formed. The deep processing approach uses the XLE LFG parser and English grammar: two versions are presented, one which uses the XLE directly to perform the classification, and another one which uses a decision tree trained on features consisting of the XLE’s output statistics. The shallow processing approach predicts grammaticality based on n-gram frequency statistics: we present two versions, one which uses frequency thresholds and one which uses a decision tree trained on the frequencies of the rarest n-grams in the input sentence. We find that the use of a decision tree improves on the basic approach only for the deep parser-based approach. We also show that combining both the shallow and deep decision tree features is effective. Our evaluation is carried out using a large test set of grammatical and ungrammatical sentences. The ungrammatical test set is generated automatically by inserting grammatical errors into well-formed BNC sentences

    Reduced structural connectivity between left auditory thalamus and the motion-sensitive planum temporale in developmental dyslexia

    Full text link
    Developmental dyslexia is characterized by the inability to acquire typical reading and writing skills. Dyslexia has been frequently linked to cerebral cortex alterations; however recent evidence also points towards sensory thalamus dysfunctions: dyslexics showed reduced responses in the left auditory thalamus (medial geniculate body, MGB) during speech processing in contrast to neurotypical readers. In addition, in the visual modality, dyslexics have reduced structural connectivity between the left visual thalamus (lateral geniculate nucleus, LGN) and V5/MT, a cerebral cortex region involved in visual movement processing. Higher LGN-V5/MT connectivity in dyslexics was associated with the faster rapid naming of letters and numbers (RANln), a measure that is highly correlated with reading proficiency. We here tested two hypotheses that were directly derived from these previous findings. First, we tested the hypothesis that dyslexics have reduced structural connectivity between the left MGB and the auditory motion-sensitive part of the left planum temporale (mPT). Second, we hypothesized that the amount of left mPT-MGB connectivity correlates with dyslexics RANln scores. Using diffusion tensor imaging based probabilistic tracking we show that male adults with developmental dyslexia have reduced structural connectivity between the left MGB and the left mPT, confirming the first hypothesis. Stronger left mPT-MGB connectivity was not associated with faster RANnl scores in dyslexics, but in neurotypical readers. Our findings provide first evidence that reduced cortico-thalamic connectivity in the auditory modality is a feature of developmental dyslexia, and that it may also impact on reading related cognitive abilities in neurotypical readers
    corecore